Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information

A novel methodology for the synthesis of condensed selenium heterocycles based on the annulation and annulation – methoxylation reactions of selenium dihalides

Maxim V. Musalov, Vladimir A. Yakimov, Vladimir A. Potapov,* Svetlana V. Amosova, Tatyana N.

Borodina and Sergey V. Zinchenko

A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of The Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russian Federation, E-mail: <u>v.a.potapov@mail.ru</u>

Table of Contents

Experimental (General)	2
Products of the methyleugenol halogenation (1a,b)	3
Examples of ¹ H and ¹³ C NMR spectra of the obtained compounds	4
X-ray data of compounds 2 and 4a	12
References	13

Experimental

General

X-ray diffraction experiments were carried out with a Bruker D8 Venture Photon 100 CMOS diffractometer with Mo-K_a radiation ($\lambda = 0.71073$ Å). ¹H (400.1 MHz), ¹³C (100.6 MHz) and ⁷⁷Se (76.3 MHz) NMR spectra were recorded on a Bruker DPX-400 spectrometer in 5-10% solution in CDCl₃ referenced to TMS (¹H and ¹³C NMR, internal) and Me₂Se (⁷⁷Se NMR, external) or to the residual chloroform peaks 7.26 ppm (¹H) and 77.16 (¹³C). All coupling constants (*J* values) were reported in Hertz (Hz). The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m= multiplet. Elemental analysis was performed on a Thermo Scientific Flash 2000 Elemental Analyzer.

Products of the methyleugenol halogenation (1a,b)

2,3-Dichloro- and 2,3-dibromopropylbenzenes 1a,b were isolated by column chromatography (silica gel, eluent: hexane \rightarrow chloroform/hexane 1 : 10) from the reaction of selenium dihalides with methyleugenol in chloroform under the conditions described for the reaction of the selenium dichloride with allyl phenyl ether [1].

2,3-Dichloropropylbenzene **1a**, 60% yield, light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 2.78-2.85 (m, 1H, ArCH₂), 2.90-2.98 (m, 1H, ArCH₂), 3.36-3.45 (m, 1H, ClCH₂), 3.69-3.77 (m, 1H, ClCH₂), 3.77 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 4.07-4.14 (m, 1H, ClCH), 6.63-6.78 (m, 3H, Ar). ¹³C NMR (100 MHz, CDCl₃) δ 43.88 (ArCH₂), 46.38 (ClCH₂), 55.97 (CH₃O), 56.26 (CH₃O), 58.79 (ClCH), 111.32 (HCAr), 112.78 (HCAr), 121.58 (HCAr), 130.68 (H₂CCAr), 148.06 (MeOCAr), 148.94 (MeOCAr). Found: C 53.03; H 5.66; Cl 28.46. Calc. for C₁₁H₁₄Cl₂O₂: C 52.74; H 5.47; Cl 28.16.

2,3-Dibromopropylbenzene **1b**, 51% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 2.95-3.04 (m, 1H, ArCH₂), 3.18-3.27 (m, 1H, ArCH₂), 3.45-3.54 (m, 1H, BrCH₂), 3.69-3.76 (m, 1H, BrCH₂), 3.75 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 4.20-4.28 (m, 1H, BrCH), 6.60-6.78 (m, 3H, Ar). ¹³C NMR (100 MHz, CDCl₃) δ 35.87 (BrCH₂), 41.21 (ArCH₂), 52.44 (BrCH), 55.61 (CH₃O), 55.71 (CH₃O), 111.02 (HC_{Ar}), 112.66 (HC_{Ar}), 121.47 (HC_{Ar}), 131.77 (H₂CC_{Ar}), 147.98 (MeOC_{Ar}), 148.68 (MeOC_{Ar}). Found: C 38.81; H 3.99; Br 46.98. Calc. for C₁₁H₁₄Cl₂O₂: C 39.08; H 4.17; Br 47.28.

Examples of ¹H and ¹³C NMR spectra of the obtained compounds

¹H NMR spectrum of compound **2**

¹H NMR spectrum of compound **3**

¹³C NMR spectrum of compound **3**

¹H NMR spectrum of compound **4b**

¹H NMR spectrum of compound **6**

¹³C NMR spectrum of compound **6**

¹H NMR spectrum of compound **7a**

¹³C NMR spectrum of compound **7a**

¹³C NMR *J*-modulation spectrum of compound **7a**

H NMR spectrum of compound 7b

¹³C NMR spectrum of compound **7b**

¹H NMR spectrum of compound **8**

¹³C NMR spectrum of compound **8**

NMR NOESY spectrum of compound 10a (E-configuration)

X-ray data of compounds 2 and 4a

Data were collected on a BRUKER D8 VENTURE PHOTON 100 CMOS diffractometer with MoK_{α} radiation ($\lambda = 0.71073$ Å) using the φ and ω scans technique. The structures were solved and refined by direct methods using the SHELX [2]. Data were corrected for absorption effects using the multi-scan method (SADABS). All non-hydrogen atoms were refined anisotropically using SHELX [2]. The coordinates of the hydrogen atoms were calculated from geometrical positions.

Crystal data and experimental details are given in Table 1.

Table 1 contains CCDC reference number of the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>http://www.ccdc.cam.ac.uk</u>

Compound	2	4b
CCDC number	1893458	1893457
Empirical formula	$C_{12}H_{16}O_3Se$	$C_{11}H_{13}O_2SeBr$
Formula mass [g/mol]	286.54	336.08
Temperature [K]	100(2)	296(2)
Crystal system	Monoclinic	Monoclinic
Space group	P21/c	Сс
<i>a</i> [Å]	12.3669(6)	9.4516(4)
<i>b</i> [Å]	6.1164(3)	17.5281(6)
c [Å]	15.6194(7)	8.3971(3)
α [°]	90	90
β [°]	91.018(2)	118.8310(10)
γ [°]	90	90
V [Å ³]	1181.28(10)	1218.70(8)
Z	4	4

Table 1. X-ray crystallographic data for compounds 2 and 4b

$D_{\text{calcd.}} [\text{g·cm}^{-3}]$	1.611	1.832
$\mu [\mathrm{mm}^{-1}]$	3.168	6.338
θ rande [°]	2.61-30.08	2.32-30.10
Reflections collected	40146	20079
Independent reflections	$3278 [R_{int} = 0.0539]$	3144 [$R_{\rm int} = 0.0377$]
$R_1, wR_2 [I > 2\sigma(I)]$	0.0297, 0.0723	0.0316, 0.0791
R_1 , wR_2 (all data)	0.0321, 0.0734	0.0516, 0.0986
Completeness [%]	99.9	99.8
Crystal size [mm]	0.67×0.67×0.47	0.25×0.20×0.07
Goodness of fit	1.080	1.159

References

- [1] V. A. Potapov, M. V. Musalov and S. V. Amosova, Tetrahedron Lett., 2011, 52, 4606.
- [2] G. M. Sheldrick, Acta Crystallogr., 2008, D64, 112.