Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

ELECTRONIC SUPPORTING INFORMATION

End-Group Functionalization of a Conjugated Azomethine with Ureas for Property Tailoring

Marie-Hélène Tremblay, Abdel Al Ahmad, and W.G. Skene*

Laboratoire de caractérisation photophysique des matériaux conjugués Département de Chimie, Pavillon JA Bombardier, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, Québec, Canada H3C 3J7

Table of Contents

Table S1. Summary of X-ray crystallographic data. 4
Table S2. Selected donor + acceptor hydrogen bond distances and angles of 1b derived from the
X-ray crystallographic structure
Table S3. Atomic coordinates of the neutral singlet of 1b calculated by DFT-ωb97X-D with the
6-31+g(d,p) basis set
Table S4. Atomic coordinates of the radical cation of 1b calculated by DFT- ω b97X-D with the 6-
31+g(d,p) basis set
Table S5. Atomic coordinates of the radical anion of 1b calculated by DFT-ωb97X-D with the 6-
31+g(d,p) basis set
Table S6. Atomic coordinates of the neutral 2 calculated by DFT- ω b97X-D with the 6-31+g(d,p)
basis set
Table S7. Atomic coordinates of the radical cation of 2 calculated by DFT- ω b97X-D with the 6-
31+g(d,p) basis set
Table S8. Atomic coordinates of the radical anion of 2 calculated by DFT- ω b97X-D with the 6-
31+g(d,p) basis set
Figure S1. Resolved X-ray crystal structure of 1b shown with the unit cell along with the
cocrystalized solvent molecules
Figure S2. Intramolecular hydrogen bonds, shown as blue lines, of the two molecules of 1b
resolved by X-ray crystallography. The intermolecular hydrogen bonds between 1b and the
cocrystallized water molecule are also shown
Figure S3. X-ray crystal structure of 1b shown along the side-on (left) and edge-on (right) views
with intermolecular hydrogen bonding illustrated by the blue dotted lines
Figure S4. Optimized geometry of 1b calculated by DFT- ω B97X-D with the 6-31G(d) basis set.7
Figure S5. Normalized complete ATR FT-IR spectra of 1b (black) and 4 (red) as a thin film drop-
cast on the ATR crystal. Theoretically calculated IR spectrum by DFT-ωB97X-D (blue)
corrected with a basis set dependent scaling factor
Figure S6. Absorption spectrum of 2 measured in anhydrous dichloromethane
Figure S7. Normalized absorption spectra of 1b measured in different solvents: ether (—),
toluene (—), acetonitrile (—), DMSO (—), ethyl acetate (—), acetone (—), THF (—), EtOH
(—), MeOH (—), and <i>i</i> -PrOH (—)
Figure S8. Normalized emission spectra of 1b measured in ethyl acetate (\bigstar), acetone (\Box), THF
(\circ), ethanol (\triangle), and <i>i</i> -propanol (\Diamond)
Figure S9. Normalized absorption (—) and emission (—) spectra of 1b measured in anhydrous
dichloromethane
Figure S10. Normalized absorption (—) and emission (—) spectra of 1b measured in 2-methyl-
THF9
Figure S11. Emission spectra of 1b measured in ethanol (—) and THF with 70% (—) and 80%
(—) volume water added10
Figure S12. Emission spectra of 1b measured in THF with different ratios of water: 0 (—), 25
(—), 60 (—), 70 (—), 80 (—) and 90 (—) % volume of water. Inset: change in fluorescence
intensity with water volume % added to THF10
Figure S13. Emission spectra of 1b in 1:9 ethanol/methanol at 298 K (—) magnified 100 times
and 77 (—) K

Figure S14. Normalized absorption spectra of 1b measured in DMSO without (black) and with	h
PO ₃ ⁴⁻ (red). Inset: photograph of vials of 1b in DMSO without (left) and with PO ₃ ⁴⁻ (right)	11
Figure S15. Emission spectra of 1b measured in DMSO (black) excited at 480 nm, PO ₃ ⁴⁻ adde	d
exciting at 480 nm (red), and exciting at 650 nm (blue).	12
Figure S16. Anodic cyclic voltammograms of $1b$ (\blacksquare) and 2 (\bullet) measured in anhydrous	
dichloromethane with TBAPF ₆ as an electrolyte with ferrocene as an internal reference at 100	
mV/sec	12
Figure S17. Uncorrected cathodic cyclic voltammogram of $1b$ (\blacksquare) and 2 (\bullet) measured in	
anhydrous dichloromethane with TBAPF ₆ as an electrolyte at 100 mV/sec.	13
Figure S18. Change in current (top) and transmittance % at 254 nm (bottom) of 1b with	
switching of applied potential measured in 0.1 M TBAFP ₆ in dichloromethane between 0 and	1.1
V at 30 second intervals. Inset: zoom of lower panel between 645 and 860 sec.	13
Figure S19. Spin density of the radical cation (top) and the radical anion (bottom) of 1b (A) ar	nd 2
(B)	14
Figure S20. ¹ H NMR of 1b in CDCl ₃	27
Figure S21. ¹³ C NMR of 1b in CDCl ₃	27
Figure S22. High-resolution mass spectrometry data of 1b	28
Figure S23. ¹ H NMR of 2 in acetone- d_6	28
Figure S24. ¹³ C NMR of 2 in acetone- d_6 .	29
Figure S25. ¹ H NMR of 3 in CDCl ₃	30
Figure S26. ¹³ C NMR of 3 in CDCl ₃	30

Chemical formula	$2(C_{40}H_{38}N_6O_{10}S_3) \cdot 2(C_3H_6O) \cdot 0.25(H_2O)$
Mr	1838.54
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	105
a, b, c (Å)	15.7977 (7), 19.3045 (9), 29.3563 (14)
β (°)	103.172 (3)
$V(Å^3)$	8717.1 (7)
Ζ	4
Radiation type	Ga $K\alpha$, $\lambda = 1.34139$ Å
$\mu (mm^{-1})$	1.38
Crystal size (mm)	0.2 imes 0.06 imes 0.04
R _{int}	0.104
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.651
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.070, 0.219, 1.02
No. of reflections	19903
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.70, -0.52
T_{\min}, T_{\max}	0.550, 0.752
No. of measured, independent and	126439, 19903, 11126
observed $[I > 2\sigma(I)]$ reflections	
No. of parameters	1159
No. of restraints	154
H-atom treatment	H-atom parameters constrained
CCDC #	1858237

Table S1. Summary of X-ray crystallographic data.

Computer programs: *APEX* 2 (2013) Bruker AXS Inc., Madison, WI 53719-1173., *SAINT* (2013) V8.34A; Integration Software for Single Crystal Data. Bruker AXS Inc., ShelXT (Sheldrick, 2015), XL (Sheldrick, 2008), Olex2 (Dolomanov *et al.*, 2009).

Hydrogen bond interaction	<i>D</i> —Н···· <i>A</i>	D—H	Н•••А	D····A	<i>D</i> —Н··· <i>A</i>
lar	N_{16} — H_{16} … O_{14} ⁱⁱ	0.88	2.46	3.207 (4)	143.7
olecu	N_{23} — H_{23} … O_{110}^{i}	0.88	2.37	3.132 (4)	144.5
ermc	N_{26} — H_{26} … O_{25}^{ii}	0.88	2.44	3.118 (4)	134.2
Int	N_{26} — H_{26} … O_{29}^{iii}	0.88	2.22	2.917 (4)	135.3
	N_{12} — H_{12} … O_{12}	0.88	2.15	2.771 (3)	127.2
lar	N_{15} — H_{15} … O_{17}	0.88	2.07	2.718 (4)	129.3
olecu	N_{15} — H_{15} … O_1	0.88	2.17	2.937 (12)	145.0
ramc	$N_{16}\!\!-\!\!H_{16}\!\cdots\!O_1$	0.88	2.00	2.811 (11)	152.7
Int	N_{22} — H_{22} … O_{22}	0.88	2.07	2.710 (4)	128.7
	N_{25} — H_{25} … O_{27}	0.88	2.12	2.755 (4)	128.9
With solvent	N_{13} — H_{13} … O_{41}^{i}	0.88	1.96	2.837 (4)	172.1
	O_1 — H_{1A} ··· O_{14}^{ii}	0.87	1.55	2.350 (11)	152.2
	$O_1 \!\!-\!\! H_{1B} \!\cdots \! O_{17}$	0.87	2.19	2.701 (12)	117.1

Table S2. Selected donor ••• acceptor hydrogen bond distances and angles of **1b** derived from the X-ray crystallographic structure.

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*; (iii) -*x*, -*y*+1, -*z*.

Figure S1. Resolved X-ray crystal structure of **1b** shown with the unit cell along with the cocrystalized solvent molecules.

Figure S2. Intramolecular hydrogen bonds, shown as blue lines, of the two molecules of **1b** resolved by X-ray crystallography. The intermolecular hydrogen bonds between **1b** and the cocrystallized water molecule are also shown.

Figure S3. X-ray crystal structure of **1b** shown along the side-on (left) and edge-on (right) views with intermolecular hydrogen bonding illustrated by the blue dotted lines.

Figure S4. Optimized geometry of **1b** calculated by DFT- ω B97X-D with the 6-31G(d) basis set.

Figure S5. Normalized complete ATR FT-IR spectra of **1b** (black) and **4** (red) as a thin film dropcast on the ATR crystal. Theoretically calculated IR spectrum by DFT- ω B97X-D (blue) corrected with a basis set dependent scaling factor.

Figure S6. Absorption spectrum of **2** measured in anhydrous dichloromethane.

Figure S7. Normalized absorption spectra of **1b** measured in different solvents: ether (—), toluene (—), acetonitrile (—), DMSO (—), ethyl acetate (—), acetone (—), THF (—), EtOH (—), MeOH (—), and *i*-PrOH (—).

Figure S8. Normalized emission spectra of **1b** measured in ethyl acetate (\bigstar), acetone (\Box), THF (\circ), ethanol (\triangle), and *i*-propanol (\Diamond).

Figure S9. Normalized absorption (—) and emission (—) spectra of **1b** measured in anhydrous dichloromethane.

Figure S10. Normalized absorption (—) and emission (—) spectra of **1b** measured in 2-methyl-THF.

Figure S11. Emission spectra of **1b** measured in ethanol (—) and THF with 70% (—) and 80% (—) volume water added.

Figure S12. Emission spectra of **1b** measured in THF with different ratios of water: 0 (-), 25 (-), 60 (-), 70 (-), 80 (-) and 90 (-) % volume of water. Inset: change in fluorescence intensity with water volume % added to THF.

Figure S13. Emission spectra of **1b** in 1:9 ethanol/methanol at 298 K (—) magnified 100 times and 77 (—) K.

Figure S14. Normalized absorption spectra of **1b** measured in DMSO without (black) and with PO_3^{4-} (red). Inset: photograph of vials of **1b** in DMSO without (left) and with PO_3^{4-} (right).

Figure S15. Emission spectra of **1b** measured in DMSO (black) excited at 480 nm, PO_3^{4-} added exciting at 480 nm (red), and exciting at 650 nm (blue).

Figure S16. Anodic cyclic voltammograms of **1b** (\blacksquare) and **2** (\bullet) measured in anhydrous dichloromethane with TBAPF₆ as an electrolyte with ferrocene as an internal reference at 100 mV/sec.

Figure S17. Uncorrected cathodic cyclic voltammogram of **1b** (\blacksquare) and **2** (\bullet) measured in anhydrous dichloromethane with TBAPF₆ as an electrolyte at 100 mV/sec.

Figure S18. Change in current (top) and transmittance % at 254 nm (bottom) of **1b** with switching of applied potential measured in 0.1 M TBAFP₆ in dichloromethane between 0 and 1.1 V at 30 second intervals. Inset: zoom of lower panel between 645 and 860 sec.

Figure S19. Spin density of the radical cation (top) and the radical anion (bottom) of **1b** (A) and **2** (B).

Table S3. Atomic coordinates of the neutral singlet of **1b** calculated by DFT- ω b97X-D with the 6-31+g(d,p) basis set.

Atom	Х	У	Z
S	0.03999	-1.14461	0.03084
S	5.7588	-1.46931	0.07984
S	-5.67429	-1.50148	-0.06332
0	8.29999	-2.49973	0.10225
0	8.09597	2.48494	-0.10877
0	6.04992	3.40944	-0.25776
0	3.32729	2.54266	1.02462
0	3.27414	2.29663	-1.21681
0	-8.20259	-2.56199	-0.08132
0	-8.05773	2.42584	-0.11714
0	-6.0264	3.38761	-0.01847
0	-3.20763	2.45401	-1.14211
0	-3.34469	2.42217	1.10435
Ν	3.04251	-0.7773	0.0497
Ν	8.1986	-0.22489	0.02274
Н	8.66935	0.68094	-0.01106
Ν	10.24505	-1.26572	0.05037
Н	10.59578	-0.31907	0.0181
Ν	-2.96692	-0.78339	-0.01943

Ν	-8.12749	-0.28489	-0.10883
Н	-8.60866	0.61589	-0.12685
Ν	-10.16169	-1.34964	-0.11507
Н	-10.52331	-0.40658	-0.12657
С	-1.19422	-2.36197	0.05645
С	-0.66692	-3.63354	0.11093
Н	-1.27941	-4.52722	0.13408
С	0.74782	-3.63264	0.13242
Н	1.36047	-4.52558	0.17332
С	1.27476	-2.3604	0.09362
С	2.6778	-2.00573	0.09318
Н	3.38258	-2.84476	0.12744
С	4.36071	-0.38538	0.03394
С	4.74103	0.92319	-0.01925
С	6.16134	1.10139	-0.03224
С	6.83388	-0.11209	0.02229
С	8.89006	-1.4264	0.06186
С	11.24025	-2.26563	0.07945
С	10.96471	-3.63642	0.11774
Н	9.94148	-3.98301	0.1276
С	12.02181	-4.54558	0.14318
Н	11.79661	-5.60713	0.17278
С	13.3455	-4.11508	0.13111
Н	14.15828	-4.83341	0.15126
С	13.61303	-2.74684	0.09285
Н	14.63745	-2.38856	0.08284
С	12.57118	-1.82786	0.06713
Н	12.79145	-0.7642	0.03729
С	6.87213	2.37509	-0.13012
С	6.62806	4.72708	-0.36513
Н	7.30507	4.74038	-1.22294
Н	7.20713	4.92573	0.54032
С	5.48114	5.69859	-0.53089
Н	4.8076	5.65537	0.3289
Н	4.91131	5.4761	-1.43702
Н	5.8756	6.71492	-0.61156
С	3.71531	2.0142	0.00456
С	2.23222	3.29298	-1.33142
Н	2.33583	3.66852	-2.34986
Н	2.43996	4.09972	-0.62516
С	0.86627	2.6766	-1.09993

Η	0.09376	3.43518	-1.25636
Η	0.77783	2.29428	-0.07993
Η	0.68661	1.85561	-1.79858
С	-2.59749	-2.01068	0.0217
Η	-3.29954	-2.85265	0.03409
С	-4.28802	-0.40129	-0.05087
С	-4.68266	0.90391	-0.07027
С	-6.10544	1.06637	-0.08745
С	-6.76438	-0.15583	-0.09034
С	-8.80499	-1.49495	-0.10028
С	-11.14519	-2.36148	-0.11175
С	-10.85332	-3.7294	-0.10455
Η	-9.82599	-4.06382	-0.10029
С	-11.89948	-4.65145	-0.10258
Η	-11.66165	-5.71064	-0.09696
С	-13.22819	-4.23658	-0.10784
Η	-14.03235	-4.96482	-0.10625
С	-13.51201	-2.8711	-0.11523
Η	-14.54063	-2.52494	-0.11946
С	-12.48121	-1.93936	-0.11711
Η	-12.71411	-0.87794	-0.12277
С	-6.83272	2.33436	-0.08006
С	-6.62811	4.69907	0.00886
Н	-7.33961	4.73804	0.83727
Η	-7.17266	4.84863	-0.92698
С	-5.50525	5.69744	0.17799
Η	-4.97583	5.53019	1.12001
Η	-5.9186	6.70933	0.19044
Н	-4.79204	5.62526	-0.6473
С	-3.67487	2.01112	-0.11448
С	-2.38462	3.49795	1.18601
Η	-2.74792	4.33109	0.57827
Η	-1.43957	3.14744	0.76378
С	-2.24805	3.8757	2.64313
Н	-1.52258	4.68804	2.7389
Η	-1.8954	3.0275	3.23538
Η	-3.20426	4.21655	3.04948

Table S4. Atomic coordinates of the radical cation of **1b** calculated by DFT- ω b97X-D with the 6-31+g(d,p) basis set.

atom	Х	У	Ζ
S	0.04116	-1.25187	0.08038
S	5.72786	-1.50818	0.07256
S	-5.63745	-1.54661	-0.00475
Ο	8.28645	-2.43504	0.10328
0	7.90277	2.5327	-0.1999
0	5.82151	3.38264	-0.30378
0	3.10016	2.38537	0.9544
0	3.14721	2.18192	-1.29327
0	-8.13911	-2.50115	-0.07162
0	-7.89177	2.46549	-0.06857
Ο	-5.84525	3.39519	0.04307
Ο	-3.05145	2.33574	-1.07442
Ο	-3.21221	2.36017	1.17789
Ν	2.99534	-0.90886	0.05362
Ν	8.10682	-0.16741	-0.02657
Н	8.54308	0.75558	-0.08134
Ν	10.18869	-1.13843	0.01845
Н	10.50627	-0.18108	-0.03374
Ν	-2.94331	-0.84953	0.06595
Ν	-8.00628	-0.22324	-0.07457
Н	-8.45605	0.70046	-0.09294
Ν	-10.07033	-1.24679	-0.14927
Н	-10.40687	-0.29371	-0.16003
С	-1.21473	-2.45789	0.14518
С	-0.68978	-3.75269	0.21774
Н	-1.31409	-4.63695	0.26535
С	0.70464	-3.76376	0.22205
Н	1.31495	-4.65668	0.27336
С	1.24362	-2.48143	0.15058
С	2.64997	-2.14386	0.12858
Н	3.35649	-2.978	0.17563
С	4.29046	-0.47886	0.02083
С	4.61905	0.84877	-0.06126
С	6.02273	1.07995	-0.08981
С	6.74445	-0.11076	-0.01954
С	8.84357	-1.34618	0.03754
С	11.21964	-2.10236	0.07047
С	10.99291	-3.48102	0.12762

Η	9.98338	-3.86573	0.13564
С	12.08242	-4.35033	0.17434
Н	11.89632	-5.41886	0.21847
С	13.38931	-3.87132	0.16482
Н	14.22761	-4.55893	0.20157
С	13.60743	-2.49504	0.1072
Н	14.61814	-2.09998	0.09862
С	12.53298	-1.6154	0.06041
Н	12.71409	-0.54493	0.01544
С	6.68438	2.38173	-0.19869
С	6.34654	4.72329	-0.42046
Н	7.00993	4.76048	-1.28789
Н	6.9301	4.94378	0.47684
С	5.16047	5.64886	-0.57019
Н	4.50021	5.57893	0.29807
Н	4.58862	5.40584	-1.4697
Н	5.51455	6.67962	-0.65396
С	3.54786	1.89781	-0.06061
С	2.0775	3.14658	-1.43598
Н	2.21768	3.55191	-2.43827
Н	2.22305	3.94015	-0.70025
С	0.72681	2.47534	-1.2853
Н	-0.06827	3.21053	-1.43804
Н	0.61589	2.04757	-0.28577
Н	0.60383	1.67836	-2.02302
С	-2.57557	-2.1142	0.12253
Н	-3.29618	-2.93687	0.15773
С	-4.21749	-0.4782	0.02638
С	-4.59214	0.88424	0.00992
С	-5.96354	1.07583	-0.01749
С	-6.6734	-0.15988	-0.03594
С	-8.73536	-1.4367	-0.09748
С	-11.08384	-2.23658	-0.18413
С	-10.82151	-3.60873	-0.21038
Н	-9.8041	-3.97227	-0.20157
С	-11.89061	-4.5031	-0.24816
Н	-11.68122	-5.56773	-0.26848
С	-13.20706	-4.05153	-0.26045
Н	-14.02932	-4.75841	-0.29018
С	-13.45838	-2.68008	-0.23446
Н	-14.47785	-2.30894	-0.24352

С	-12.40488	-1.77526	-0.19607
Η	-12.60975	-0.70864	-0.17529
С	-6.6722	2.37365	-0.01982
С	-6.41088	4.73213	0.05517
Η	-7.12341	4.79167	0.88062
Η	-6.94427	4.88017	-0.88649
С	-5.25929	5.69557	0.21974
Η	-4.74242	5.52709	1.16813
Η	-5.64501	6.71805	0.21595
Η	-4.54494	5.59326	-0.601
С	-3.53453	1.95213	-0.03426
С	-2.20571	3.4016	1.26931
Η	-2.52808	4.24006	0.64682
Η	-1.27165	3.00469	0.86618
С	-2.0823	3.78407	2.72507
Η	-1.32596	4.56678	2.82547
Н	-1.77373	2.92793	3.32994
Н	-3.03016	4.16839	3.11086

Table S5. Atomic coordinates of the radical anion of **1b** calculated by DFT- ω b97X-D with the 6-31+g(d,p) basis set.

atom	X	У	Z
S	-0.01168	-0.79235	0.0723
S	5.68573	-1.39639	0.07743
S	-5.69342	-1.39059	0.00594
Ο	8.17058	-2.69181	0.02943
Ο	8.42826	2.29433	0.01663
Ο	6.49189	3.42161	-0.17524
Ο	3.7837	2.86657	1.20023
Ο	3.54224	2.64314	-1.02701
Ο	-8.17734	-2.67915	0.00769
Ο	-8.4223	2.2988	-0.26193
Ο	-6.51595	3.42102	0.1377
Ο	-3.95405	2.89375	-1.34425
Ο	-3.28157	2.53756	0.76927
Ν	3.05578	-0.45119	0.09578
Ν	8.25552	-0.41119	0.05247
Η	8.81001	0.4458	0.05748
Ν	10.20661	-1.61234	0.01342
Η	10.63085	-0.69597	0.01264

Ν	-3.06427	-0.46323	0.01225
Ν	-8.25719	-0.40264	-0.1378
Η	-8.80918	0.45095	-0.22907
Ν	-10.20989	-1.60294	-0.12696
Н	-10.63344	-0.6905	-0.2151
С	-1.26668	-2.02728	0.09668
С	-0.69343	-3.31704	0.14848
Н	-1.3012	-4.21528	0.17023
С	0.68843	-3.31063	0.16614
Н	1.30331	-4.2036	0.20332
С	1.25197	-2.01651	0.12933
С	2.61448	-1.69247	0.12968
Н	3.30154	-2.54792	0.15874
С	4.38472	-0.17133	0.0742
С	4.91918	1.0914	0.0649
С	6.35734	1.11361	0.05573
С	6.90122	-0.15811	0.06666
С	8.83719	-1.66255	0.03096
С	11.11842	-2.68545	-0.01162
С	10.73841	-4.03229	-0.00553
Н	9.69126	-4.29738	0.01888
С	11.7212	-5.02129	-0.03187
Η	11.41355	-6.06247	-0.02716
С	13.07441	-4.69574	-0.06324
Н	13.82853	-5.47551	-0.08343
С	13.44708	-3.35166	-0.06845
Η	14.49607	-3.07378	-0.09266
С	12.4803	-2.35405	-0.04307
Н	12.78326	-1.31031	-0.04803
С	7.19789	2.30393	-0.0273
С	7.20641	4.66929	-0.259
Н	7.89468	4.62201	-1.10697
Н	7.79024	4.79904	0.65615
С	6.1711	5.75891	-0.42956
Н	5.48583	5.78022	0.42184
Н	5.59169	5.604	-1.3437
Н	6.67092	6.72895	-0.49687
С	4.03628	2.28989	0.16073
С	2.63431	3.76334	-1.05871
Н	2.70277	4.13368	-2.08253
Н	2.99869	4.53129	-0.37245

С	1.22002	3.33452	-0.71794
Н	0.55456	4.19978	-0.79767
Н	1.16313	2.94528	0.30125
Н	0.86915	2.56257	-1.40771
С	-2.62874	-1.70753	0.06746
Н	-3.31727	-2.56176	0.09412
С	-4.38682	-0.17058	-0.00192
С	-4.91603	1.09556	-0.09301
С	-6.35423	1.11814	-0.1549
С	-6.90226	-0.15043	-0.11927
С	-8.84099	-1.65157	-0.07855
С	-11.12016	-2.67754	-0.10441
С	-10.7458	-4.01229	0.08741
Н	-9.70427	-4.26666	0.2216
С	-11.72656	-5.00348	0.10148
Н	-11.42329	-6.03527	0.25041
С	-13.07261	-4.69158	-0.06924
Н	-13.82532	-5.47287	-0.05571
С	-13.43991	-3.35931	-0.25781
Н	-14.48325	-3.09231	-0.39324
С	-12.47467	-2.35998	-0.27688
Н	-12.77267	-1.32576	-0.42762
С	-7.19977	2.30832	-0.11355
С	-7.24441	4.6627	0.18408
Н	-7.99894	4.5963	0.97256
Н	-7.75381	4.80417	-0.77281
С	-6.2373	5.75827	0.45579
Η	-5.72923	5.5917	1.40942
Н	-6.75236	6.72163	0.50204
Η	-5.48793	5.80324	-0.33862
С	-4.02649	2.26855	-0.3023
С	-2.27922	3.56063	0.62099
Н	-2.78057	4.52	0.46067
Н	-1.68006	3.33228	-0.26434
С	-1.44037	3.56284	1.87934
Н	-0.66789	4.33301	1.80041
Н	-0.94953	2.59588	2.01828
Н	-2.05296	3.77772	2.75916

Table S6. Atomic coordinates of the neutral **2** calculated by DFT- ω b97X-D with the 6-31+g(d,p) basis set.

Atom	Х	У	Ζ
S	5.29574	-2.4877	-0.10935
S	-0.32006	-1.2521	-0.05409
0	-3.03648	-1.63319	0.07201
0	-1.63975	3.13825	-0.31378
0	0.5684	3.55823	-0.39393
0	3.04459	1.83467	-1.46313
0	2.92927	2.0706	0.77206
Ν	2.47953	-1.25604	-0.14626
Ν	-2.38773	0.54378	-0.10719
Η	-2.62508	1.5352	-0.17097
Ν	-4.62401	0.03503	0.0008
Η	-4.73654	1.03662	-0.06513
С	3.74831	-3.27501	-0.07241
С	3.8856	-4.64318	-0.02214
Η	3.03799	-5.31836	0.00672
С	5.24408	-5.06077	-0.01334
Η	5.5635	-6.09469	0.02301
С	6.1107	-4.00228	-0.05679
С	2.50497	-2.53733	-0.09452
Η	1.59748	-3.15276	-0.06554
С	1.2994	-0.54418	-0.16359
С	1.24553	0.81429	-0.2582
С	-0.0912	1.3335	-0.24338
С	-1.03603	0.32254	-0.14019
С	-3.3482	-0.45036	-0.00429
С	-5.83002	-0.68992	0.10324
С	-5.89531	-2.08554	0.17051
Η	-4.98795	-2.67162	0.14795
С	-7.13963	-2.70763	0.26737
Η	-7.17883	-3.79127	0.31914
С	-8.3175	-1.96641	0.29752
Η	-9.27895	-2.46332	0.37299
С	-8.24507	-0.57525	0.22925
Η	-9.1506	0.0226	0.25128
С	-7.0131	0.06017	0.13334
Н	-6.96823	1.14477	0.08254
С	-0.47632	2.74127	-0.32024
С	0.31112	4.97648	-0.46558

Η	-0.31365	5.26011	0.38481
Η	-0.2396	5.18106	-1.38733
С	1.65294	5.67279	-0.44026
Η	2.18335	5.46	0.492
Η	1.50202	6.75316	-0.51059
Η	2.27333	5.35487	-1.28234
С	2.49387	1.62774	-0.40259
С	4.11144	2.89936	0.75313
Η	3.95157	3.71129	0.0388
Η	4.95212	2.29316	0.40524
С	4.32626	3.41495	2.15794
Η	5.21764	4.04771	2.17866
Η	4.47221	2.59	2.86002
Η	3.4717	4.01132	2.48929
Н	7.19187	-4.03215	-0.06154

Table S7. Atomic coordinates of the radical cation of **2** calculated by DFT- ω b97X-D with the 6-31+g(d,p) basis set.

Atom	Х	У	Z
S	5.22237	-2.42922	-0.04178
S	-0.3712	-1.28661	-0.0239
0	-3.03029	-1.60944	0.12039
0	-1.61402	3.13835	-0.26318
0	0.59557	3.55687	-0.34451
0	2.96881	1.77758	-1.53599
0	2.98955	1.99812	0.71128
Ν	2.40809	-1.25655	-0.1677
Ν	-2.35721	0.56346	-0.06066
Η	-2.57249	1.5668	-0.11979
Ν	-4.60763	0.06791	0.02018
Н	-4.70817	1.0707	-0.06058
С	3.6873	-3.25255	-0.11601
С	3.85609	-4.63911	-0.10684
Н	3.02158	-5.32925	-0.14687
С	5.2041	-5.01761	-0.04072
Н	5.55607	-6.04035	-0.02368
С	6.04631	-3.92325	-0.00068
С	2.45808	-2.57213	-0.16834
Н	1.55805	-3.1926	-0.21746
С	1.25815	-0.59076	-0.15972

С	1.21583	0.82079	-0.24827
С	-0.06736	1.33323	-0.21521
С	-1.05043	0.3038	-0.10276
С	-3.35716	-0.43707	0.03671
С	-5.82923	-0.64581	0.10471
С	-5.9052	-2.03919	0.17238
Η	-5.00626	-2.6385	0.16536
С	-7.15785	-2.64685	0.24918
Η	-7.21157	-3.72946	0.30168
С	-8.32574	-1.88986	0.25827
Η	-9.29377	-2.37561	0.31808
С	-8.23898	-0.49968	0.18973
Η	-9.13842	0.107	0.19595
С	-6.99889	0.12209	0.11388
Η	-6.93978	1.20571	0.06321
С	-0.4497	2.76223	-0.27843
С	0.36086	4.98897	-0.40565
Н	-0.25479	5.26772	0.4521
Η	-0.19177	5.19896	-1.32407
С	1.71445	5.65848	-0.38349
Н	2.24613	5.43197	0.54448
Η	1.5787	6.74104	-0.44536
Η	2.32248	5.33824	-1.23333
С	2.48938	1.59675	-0.44062
С	4.21769	2.76984	0.65354
Η	4.05484	3.61431	-0.02049
Н	4.99871	2.13131	0.23396
С	4.53585	3.21559	2.06103
Η	5.4578	3.80261	2.05007
Η	4.6814	2.35697	2.72113
Η	3.73427	3.84023	2.46367
Н	7.1272	-3.93755	0.05

Table S8. Atomic coordinates of the radical anion of **2** calculated by DFT- ω b97X-D with the 6-31+g(d,p) basis set.

Atom	Х	У	Z
S	5.49866	-2.45434	-0.15111
S	-0.03597	-1.32229	-0.00705
0	-2.82296	-1.86813	0.02113
0	-1.65244	2.97783	0.13028

0	0.31387	3.44301	-0.84151
0	3.6476	1.68681	-0.37119
0	2.23433	2.78641	0.99217
Ν	2.7111	-1.20333	-0.117
Ν	-2.23127	0.33888	0.12613
Н	-2.52487	1.3096	0.22908
Ν	-4.44665	-0.23576	0.09976
Н	-4.58506	0.76423	0.08461
С	3.94036	-3.26984	-0.10032
С	4.12897	-4.65651	-0.07747
Н	3.30003	-5.35475	-0.04566
С	5.49346	-5.03638	-0.10037
Н	5.83044	-6.06741	-0.08829
С	6.35549	-3.97007	-0.14033
С	2.73094	-2.54579	-0.0868
Н	1.81161	-3.1406	-0.0568
С	1.57986	-0.51568	-0.10323
С	1.41055	0.87935	-0.0603
С	0.01848	1.27878	0.01819
С	-0.85221	0.21447	0.07892
С	-3.14724	-0.68608	0.07558
С	-5.63151	-0.99388	0.09026
С	-5.66542	-2.3906	0.17787
Н	-4.74243	-2.94805	0.24599
С	-6.8947	-3.04875	0.17161
Н	-6.90633	-4.13235	0.23935
С	-8.09243	-2.34459	0.08166
Н	-9.04193	-2.86966	0.07788
С	-8.05332	-0.9529	-0.00344
Н	-8.97387	-0.382	-0.07439
С	-6.83645	-0.28207	-0.00063
Н	-6.81898	0.80245	-0.06986
С	-0.51528	2.62677	-0.19347
С	-0.12953	4.79436	-1.05341
Н	-0.39652	5.23196	-0.08688
Н	-1.02591	4.77799	-1.67955
С	1.004	5.54431	-1.71704
Н	1.8898	5.56234	-1.0765
Н	0.69519	6.57605	-1.90638
Н	1.27275	5.08244	-2.67048
С	2.53449	1.78337	0.12873

С	3.18748	3.84592	1.10723
Η	3.46151	4.19157	0.10519
Η	4.09421	3.46755	1.58955
С	2.54511	4.94912	1.92169
Η	3.2439	5.78348	2.03116
Η	2.27495	4.59172	2.91916
Η	1.64003	5.31807	1.43009
Н	7.43639	-3.98431	-0.16538

Figure S22. High-resolution mass spectrometry data of 1b.

Figure S23. ¹H NMR of 2 in acetone-d₆.

Figure S26. ¹³C NMR of **3** in CDCl₃.