Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting information

Self-assembled star-shaped aza-BODIPY mesogen affords white-light emission

Chao Liu, [‡]^[a] Wei Ding, [‡]^[a] Yuantao Liu, ^[a] Hongmei Zhao, ^[a] Xiaohong Cheng*^[a,b]

- [a] Key Laboratory of Medicinal Chemistry for Natural Resources, Chemistry School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China.
- [b] School of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, 408100, PR China.

Fax: (+86) 871 65032905

E-mail: xhcheng@ynu.edu.cn

‡Both authors contributed equally to this work

Content

1.	Additional Experimental Data	S02
2.	Syntheses and Analytical Data	S05
3.	References	S10

1 Additional Experimental Data

1.1 Additional DSC traces

Fig. S1 DSC heating and cooling scans (10 K min⁻¹) of compound ADP/12.

Table S1 Experimental and calculated *d*-spacings of the observed SAXS reflections of the hexagonal phase in compound ADP/12 at 55 °C. All intensity values are Lorentz and multiplicity

(<i>hk</i>)	$d_{\rm obs.}$ –spacing (nm)	$d_{\text{cal.}}$ –spacing (nm)	intensity			
(10)	3.75	3.76	100			
(11)	2.17	2.17	0.02			
(20)	1.88	1.88	0.05			
$a_{\rm hex} = 4.34 \ {\rm nm}$						

corrected.

Fig. S2 (a) SAXS diffraction pattern of $\text{Col}_{\text{hex}}/p6mm$ phase of compound ADP/12 recorded at 55 °C; (b) Diffuse scattering in the wide-angle region of the $\text{Col}_{\text{hex}}/p6mm$ phase of compound ADP/12 at 55 °C.

Table S2 Calculations of molecular volume (V_{mol}), volume of the (hypothetical) unit cells(V_{cell}) and number of molecules in these unit cells (n_{cell}).^a

Comp	phase	<i>a</i> /nm (T/°C)	$V_{\text{cell}}/\text{nm}^3$	$V_{\rm mol}/\rm nm^3$	$n_{\rm cell, cryst}$	n _{cell,liq}	n _{cell}	п
ADP/12	Col _{hex} /p6mm	4.34 (55)	7.34	5.438	1.3	1.0	1.2	1.3

 ${}^{a}V_{cell}$ = volume of the unit cell defined by the dimensions 1/2 3^{1/2} $a^{2}h$ for the columnar phases; V_{mol} = volume for a single molecule as calculated using the crystal volume increments, ^{S1} $n_{cell,cryst}$ = number of molecules in the unit cell, calculated according to $n_{cell,cryst} = V_{cell}/V_{mol}$ (average packing coefficient in the crystal is k = 0.7; ^{S2} $n_{cell,liq}$ = number of molecules in the unit cell of an isotropic liquid with an average packing coefficient k = 0.55, calculated according to $n_{cell,liq} = 0.55/0.7 \times n_{cell,cryst}$; n_{cell} (average) = number of molecules in the unit cell in the cubic phase estimated as the average of that in the $n_{cell,cryst}$ and $n_{cell,liq}$.

Table S3 The phase transition temperatures, XRD data and other data of compound ADP/1	.2 ."
--	--------------

Comp.	$T/^{\circ}$ C [$\Delta H/kJ \text{ mol}^{-1}$]	<i>a</i> /nm (<i>T</i> /°C)	L	μ	$d_{ m diff}$
ADP/12	$Cr 20 > Col_{hex}/p6mm 81.5 [0.4]$ Iso	$a_{\rm hex} = 4.34~(55)$	6.8 nm	1.3	0.45 nm

a: Abbreviations: Cr = crystal; Col_{hex} = hexagonal columnar phase; Iso = isotropic liquid; a = lattice parameter; L

= maximum molecular length in the most extended conformation; μ = number of molecules in a stratum of the columns in the Col_{hex} phase with a height corresponding to d_{diff}

Fig. S3. The spectral of the ADP/12 absorbance (black line) and emission (red line).

Fig. S4. (a) The absorption response of **ADP/12** $(1 \times 10^{-5} \text{ M})$ upon addition of different anions in THF at room temperature; (b) The samples with addition of different metal ions, under irradiation with daylight.

Fig. S5. Plots of the detection limits for CN^- evaluated from the fluorescence emission of **ADP/12**, Job's plots for **ADP/12-CN**⁻, [**ADP/12**] + [CN⁻] = 5.0×10^{-5} mol·L⁻¹, abbreviation: F₀ = the fluorescence emission maximum of the blank sample; F = the fluorescence emission maximum of samples after addition of CN⁻.

Fig. S6. The spectrum response of compound **6** $(1 \times 10^{-5} \text{ M})$ upon addition of different anions in THF at room temperature: (a) UV-vis absorption spectrum; (b) Fluorescence emission spectrum.

Fig. S7. Formation of 6-CN by nucleophilic addition of CN⁻ ion to 6.

Fig. S8. (a) The spectral overlap between the **2ET/12** emission (red) and **6-CN** absorbance (black); (b) The spectral overlap between the **2ET/12** emission (red) and **ADP-CN** absorbance (black).

Fig. S9. Emission spectrum of the gel of 6-CN $(1 \times 10^{-5} \text{ M}) + 2\text{ET}/12 (1 \times 10^{-5} \text{ M})$, the insert is the photo of the 2ET/12, 6-CN + 2ET/12, 6-CN solution in THF under 365 nm UV light. (b) CIE coordinates of 6-CN + 2ET/12.

2 Materials synthesis and analytical data

Scheme S1 Synthesis of compounds ADP/12: *Reagents and conditions*: (*i*) 3-Bromopropyne, acetone, K_2CO_3 , 90 °C, 8 h, 93%; (*ii*) 3-Bromopropyne, acetone, K_2CO_3 , 90 °C, 8 h, 94%; (*iii*) C₂H₅OH, KOH, H₂O, RT, 6 h, 89%; (*iv*) CH₃NO₂, (C₂H₅)₂NH, CH₃OH, reflux, 12 h, 76%; (*v*) NH₄OAc, C₂H₅OH, 80 °C, 48 h; (*vi*) BF₃·Et₂O, DIPEA, CH₂Cl₂, RT, 10 h, 31%; (*vii*) tert-Butanol, THF, H₂O, sodium ascorbate, CuSO₄·5H₂O, RT, 12 h, 75%.

General Remarks

Commercially available chemicals were used as received. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker–DRX-400 spectrometer and Bruker–DRX-600 spectrometers. Elemental analysis was performed using an Elementar VARIO EL elemental Analyzer. Column chromatography was performed with Merck silica gel 60 (230 - 400 mesh).

General procedure for the synthesis of 3,4,5-tris(alkyl)benzyl azide 7

Compound 7 were synthesized according to literature procedures in ref.^{S3}

4-propargyloxy benzaldehyde 1.

Into a 100 mL round-bottom flask were added 4-hydroxybenzaldehyde (20 mmol, 2.44 g), propargyl bromide (20 mmol, 1.49 ml), K₂CO₃ (20 mmol, 2.76 g) and acetone (30 mL). The reaction mixture was refluxed for 8 h. the mixture was extracted twice with dichloromethane and the combined organic layers were dried over MgSO₄, and concentrated by rotary evaporation. The residue was purified by column chromatography (eluent: petroleum ether : EtOAc := 5 : 1) to give yellow oily compound 1. Yield: 93%. ¹H NMR (400 MHz, CDCl₃): δ = 9.86 (s, 1H, ArCOH), δ = 7.83-7.81 (d, 2H, *J* = 8.4 Hz, 2 ArH), δ = 7.07-7.05 (d, 2H, *J* = 8.4 Hz, 2 ArH), δ = 4.75 (s, 2H, ArOCH₂), δ = 2.57 (s, 1H, alkyne-H).

4-propargyloxy acetophenone 2

Into a 100 mL round-bottom flask were added 4-hydroxybenzaldehyde (20 mmol, 2.72 g), propargyl bromide (20 mmol, 1.49 ml), K₂CO₃ (20 mmol, 2.76 g) and acetone (30 mL). The mixture was stirred for about 8 h. Upon completion, EtOAc and H₂O were added, the aqueous layer was extracted with EtOAc, and the combined organic layers were dried over MgSO₄, and concentrated by rotary evaporation. The residue was purified by column chromatography (eluent: petroleum ether : EtOAc : = 4 : 1) to give compound **2**. White solid, yield: 94 %, ¹H NMR (400 MHz, CDCl3) δ = 7.99-7.97 (d, 2H, *J* = 9.0 Hz, 2 ArH), δ = 7.05-7.03 (d, 2H, *J* = 9.0 Hz, 2 ArH), δ = 4.78-4.77 (d, 2H, *J* = 2.4 Hz, ArOCH₂), δ = 2.54-2.53 (m, 4H, -CH₃ and alkyne-H).

1,3-Di[4-(2-Propynyloxy) phenyl]propanone 3

A solution of compound **2** (10 mmol, 1.74 g) in ethanol (10 mL) was added gradually to an aqueous solution of 10% KOH (30 mL) at 0°C. After stirring for 15 min, compound **1** (1.60 g, 10 mmol) was added and stirred at 0°C for 15 min. The mixture was then allowed to attain room temperature and stirred for 6 h. After the reaction was completed, the precipitate was filtered, washed with cold ethanol and water, and dried under vacuum to afford a white solid. Yield: 89 % ¹H NMR (400 MHz, CDCl3): δ = 8.05-8.03 (d, 2H, *J* = 8.8 Hz, 2 Ar**H**), δ = 7.80-7.76 (d, 1H, *J* = 15.6 Hz, ArC**H**), δ = 7.08-7.05 (d, 2H, *J* = 8.8 Hz, 2 Ar**H**), δ = 7.46-7.42 (d, 1H, *J* = 15.6 Hz, ArCHC**H**), δ = 7.08-7.05 (d, 2H, *J* = 8.8 Hz, 2Ar**H**), δ = 7.03-7.01 (d, 2H, *J* = 8.4 Hz, 2Ar**H**), δ = 4.78 (d, 2H, *J* = 2.4 Hz, ArOC**H**₂), δ = 4.75-4.74 (d, 2H *J* = 2.0 Hz, ArOC**H**₂), δ = 2.57-2.56 (m, 2H, 2 alkyne-**H**).

3-[4-(2-Propynyloxy)phenyl]-4-nitro-1-[4-(2-propynyloxy)phenyl]-butan-1-one 4

To the solution of compound **3** (1.17 g, 3.6 mmol) in methanol (30 ml) was added diethylamine (1.8 mL, 18 mmol,) and nitromethane (18 mmol, 1.2 mL). The mixture was then heated under reflux for 24 h. The solution was cooled and evaporated to dryness under vacuum. The residue was purified by silica gel chromatography with CH₂Cl₂/petrol ether (1:1) as eluant to afford a yellow powder. Yield: 76%. ¹H NMR (600 MHz, CDCl₃): δ = 7.91-7.90 (d, 2H, *J* = 6.6 Hz, 2 ArH), δ = 7.21-7.20 (d, 2H, *J* = 6.6 Hz, 2 ArH), δ = 7.01-7.00 (d, 2H, *J* = 7.2 Hz, 2 ArH), δ = 6.93-6.92 (d, 2H, *J* = 6.6 Hz, 2 ArH), δ = 4.81-4.78 (m, 1H, NO₂CH₂), δ = 4.75 (d, 2H, *J* = 1.8 Hz,

ArOCH₂), $\delta = 4.65$ (d, 2H, J = 1.8 Hz, ArOCH₂), $\delta = 4.64-4.62$ (m,1H NO₂CH₂), $\delta = 4.18-4,15$ (t, 1H, J = 7.2 Hz, ArCHCH₂), $\delta = 3.40-3.32$ (m, 2H, ArCHCH₂), $\delta = 2.55$ (s, 1H, alkyne-H).), $\delta = 2.51$ (s, 1H, alkyne-H).

BF2chelateof{3,5-di[4-(2-propynyloxy)phenyl]-1H-pyrrol-2-yl}{3,5-di[4-(2-propynyloxy)-phenyl]pyrrol-2-ylidene}amine 6

A mixture of 4 (1.5g, 3.97 mmol) and ammonium acetate (13.78g, 0.178 mol) in ethanol (30 mL) was stirred under reflux for 48 h. After cooling, the mixture was concentrated under reduced pressure Then CH_2Cl_2 (200 mL) and water (50 mL) were added. The organic layer was separated, washed with water (3 × 50 mL) and dried over MgSO₄. The solvent was evaporated to give the product as a dark blue solid **5** which was used in the next step. The crude product was dissolved in dry CH_2Cl_2 (30 mL), treated with diisopropylethylamine (0.7 mL, 4.0 mmol) and boron trifluoride diethyl etherate (1 mL, 8.13 mmol), and stirred at room temperature under N₂ for 10 h. The mixture was washed with water (50 mL), and organic layer was dried over MgSO₄ and evaporated to dryness. Purification by column chromatography on silica eluting with CH_2Cl_2 /petrol ether (1:1) and evaporation of the solvent gave the brown solid. Yield: 31%.

¹H NMR (400 MHz, CDCl₃): δ = 8.08-8.03 (m, 8H, 8 ArH), δ = 7.10-7.06 (m, 8H, 8 ArH), δ = 6.95 (s, 2H, pyrrole-H), δ = 4.79-4,76 (m, 8H, 4 ArOCH₂), δ = 2.60(s, 2H, 2 alkyne-H), δ = 2.57 (s, 2H, 2 alkyne-H).

¹³C NMR ([D₆]DMSO, 100 MHz): 160.1, 159.0, 157.6, 144.9, 142.3, 131.9, 131.1, 125.6, 124.5
118.9, 115.7, 115.6, 79.5, 79.3, 79.2, 79.0, 56.2, 56.1.

The procedure for the synthesis of the compounds ADP/12.

Compound 6 (412 mg, 0.6 mmol), compound 7 (72 mg, 0.1 mmol) were dissolved in THF (15 mL), tert-butyl alcohol : $H_2O = 1 : 1$ (2 mL), $CuSO_4 \cdot 5H_2O$ (120 mg, 0.48 mmol) and sodium ascorbate (158 mg, 0.8 mmol) were added. The mixture was stirred 20 h at RT. The solvent was removed in vacuo. The residue was extracted with CH_2Cl_2 (3 × 30 mL). The combined extracts were washed with brine, dried over MgSO4, then the solvent was removed in *vacuo*. The residue was purified by chromatography (eluent : CH_2Cl_2 : petrol ether = 2 : 1). Dark blue solid, yield: 75%.

ADP/12: ¹H NMR (600 MHz, CDCl₃) δ (ppm): δ = 8.03-7.94 (br, 8 H, 8 ArH), δ = 7.59 (s, 4 H, 4 triazole-H), δ = 7.06-7.00 (br, 8 H, 8 ArH), δ = 6.91 (s, 2H, pyrrole-H), δ = 6.47 (s, 8 H, 8 ArH and 2 pyrrole-H), δ = 5.40 (s, 8 H, 4 ArOCH₂-triazole), δ = 5.28 (s, 8 H, 4 triazole-CH₂Ar), δ = 3.93-3.91 (t, 24 H, *J* = 6.0 Hz, 12 ArOCH₂), δ = 1.76-1.73 (m, 24 H, 12 ArOCH₂CH₂), δ = 1.44 (s, 24 H, 12 ArOCH₂CH₂CH₂), δ = 1.28 (s, 192 H, 96 CH₂), δ = 0.88-0.86 (t, 36 H, *J* = 5.4 Hz, 12 CH₃).

 $^{13}C NMR (CDCl_3, 100 MHz): 153.6, 150.0, 138.6, 129.2, 122.9, 115.5, 115.0, 114.6, 106.8, 73.5, 69.3, 54.6, 31.9, 31.8, 30.3, 29.7, 29.5, 29.4, 29.3, 26.1, 22.7, 14.1 (multi carbons in alkyl chain). Elemental analysis calcd (%) for C₂₁₆H₃₄₆BF₂N₁₅O₁₆ (3458.04); C, 75.02; H, 10.09; N, 6.08; Found: C, 74.32; H, 9.85; N, 5.56$

3 ¹H and ¹³C NMR spectra for representative compounds

Fig. S10. 1 H NMR (CDCl₃, 400 MHz ppm) spectra of compound 6.

Fig. S11. ¹³C NMR ([D₆]DMSO, 100 MHz) spectra of compound 6

Fig. S12. ¹H NMR (CDCl₃, 600 MHz ppm) spectra of compound ADP/12.

Fig. S13. ¹³C NMR (CDCl₃, 100 MHz ppm) spectra of compound ADP/12.

Fig. S14. The Gel Permeation Chromatography (GPC) of ADP/12.

- S1 A. Immirzi, and B. Perini, Acta Cryst. Sect. A, 1997, 33, 216 218.
- S2 A. I. Kitaigorodsky, Molekülkristalle, and Akademieverlag Berlin, 1979.
- S3 (a) X. P. Tan, L. Y. Kong, H. Dai, X. H. Cheng, F. Liu and C. Tschierske, *Chem. Eur. J.*, 2013, **19**, 16303 16313; (b) M. Lammens, J. Skey, S. Wallyn, R. O'Reilly and F. D. Prez, *Chem. Commun.*, 2010, **46**, 8719 8721; (c) D. X. Huang, M. Prehm, H. F. Gao, X. H. Cheng, Y. S. Liu and C. Tschierske, *RSC Adv.*, 2016, **6**, 21387 -21395.