Electronic Supplementary Information

Photo-rechargeable fuel cell using photo-hydrogenation reactions of quinone molecules

Yosuke Ishii¹*, Keisuke Kurimoto¹, Kento Hosoe¹, Remi Date¹, Itta Yamada¹, and Shinji Kawasaki¹*¹

Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.

*E-mail: ishii.yosuke@nitech.ac.jp, kawasaki.shinji@nitech.ac.jp; Tel/Fax: +81-52-735-5221

Fig. S1. A schematic picture (left) and electrode reaction (right) of our new concept photo-rechargeable fuel cell.

Figure S2. Cyclic voltammogram of 0.1 mol/L AQDS dissolved in H_2SO_4 aqueous solution.

Figure S3. Electrochemical charge/discharge curves of the fuel cell without AQDS.

Figure S4. UV-Vis spectrum (left) and energy diagram (right) of AQDS.

Figure S5. Cycle performance of the fuel cell by the electrochemical charge/discharge experiments

(current density: $3 \mu A/cm^2$).

Figure S6. Cycle performance of the fuel cell by the photo-charging / electrochemical-discharge

experiments (red line: photo-charging, blue line: electrochemical discharging).