Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting information

Synthesis and anticancer activity of cyclotriphosphazenes functionalized with 4-methyl-7-hydroxycoumarin

Jipeng Chen ^a, Le Wang ^{a*}, Yu Fan ^b, Yunxia Yang ^a, Mengsheng Xu ^aand Xiangyang Shi ^{b,*}

- ^a College of chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China. E-mail: wangle316@sues.edu.cn.
- ^b College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China. E-mail: xshi@dhu.edu.cn.

CCK-8 assay of the newly synthesized compound (2a, 2b, 2c): A standard CCK-8 2b and 2c

and the number of terminal coumarin moieties effect results were shown in Fig. S1.

^{*} Number(n): Numbers of coumarin moieties on the surface of cyclotriphosphazenes as core assay was conducted against 4T1 and MCF-7 cells to evaluate the cytotoxicity of **2a**, **2b** and **2c**.

Fig. S1 Antiproliferative activity (IC₅₀ μ M) of dendrimers (**2a**, **2b** and **2c**) in MCF-7 and 4T1 cells versus number of terminal coumarin moieties.

¹H-NMR and ¹³C-NMR spectra

Fig.S2 ¹H NMR spectrum of 1a in CDCl₃

Fig.S3 ³¹P NMR spectrum of 1a in CDCl₃

Fig.S4¹³C NMR spectrum of 1a in CDCl₃

Fig.S5 ¹H NMR spectrum of 1b in CDCl₃

Fig.S6³¹P NMR spectrum of **1b** in CDCl₃

Fig.S7 ¹³C NMR spectrum of 1b in CDCl₃

Fig.S8 ¹H NMR spectrum of 2a in CDCl₃

Fig.S9³¹P NMR spectrum of 2a in CDCl₃

Fig.S10¹³C NMR spectrum of 2a in CDCl₃

Fig.S11 The MS spectrum of 2a

Fig.S12¹H NMR spectrum of 2b in CDCl₃

Fig.S13³¹P NMR spectrum of 2b in CDCl₃

Fig.S14¹³C NMR spectrum of 2b in CDCl₃

Fig.S15 The MS spectrum of 2b

Fig.S16¹H NMR spectrum of 2c in CDCl₃

Fig.S17³¹P NMR spectrum of 2c in CDCl₃

Fig.S18¹³C NMR spectrum of 2c in CDCl₃

Fig.S19 The MS spectrum of 2c

Fig.S20¹H NMR spectrum of 3a in CDCl₃

Fig.S21³¹P NMR spectrum of 3a in CDCl₃

Fig.S22¹³C NMR spectrum of 3a in CDCl₃

Fig.S23 The MS spectrum of 3a