Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Boron-decorated C₉N₄ monolayers as promising metal-free catalysts for electrocatalytic nitrogen reduction reaction: A first-principle study

Jing Zhang,^a Yameng Zhao,^{ab} Zhi Wang,^a Gui Yang,^a Junlong Tian,^a Dongwei Ma^a and Yuanxu Wang^{*b}

^aSchool of Physics, Anyang Normal University, Anyang 455000, China ^bInstitute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China

Electronic Supplementary Information

^{*}Corresponding author. E-mail: <u>wangyx@henu.edu.cn</u> (Yuanxu Wang).

Species	$E_{ZPE}\left(\mathbf{eV}\right)$	TS (eV)
N2	0.15	0.58
*N≡N	0.23	0.11
*N=NH	0.51	0.15
*NH=NH	0.87	0.10
*NH-NH ₂	1.20	0.12
*NH ₂ -NH ₂	1.50	0.14
*NH ₂ -NH ₃	1.70	0.33
*N-NH ₂	0.84	0.12
*N-NH3	1.19	0.11
*N	0.08	0.06
*NH	0.38	0.07
*NH ₂	0.74	0.06
*NH3	1.04	0.07
NH ₃	0.89	0.06

Table S1. Calculated zero-point energy and entropy of different adsorption species along the alternating pathway for NRR on $B-C_9N_4$, where * denotes the adsorption site.

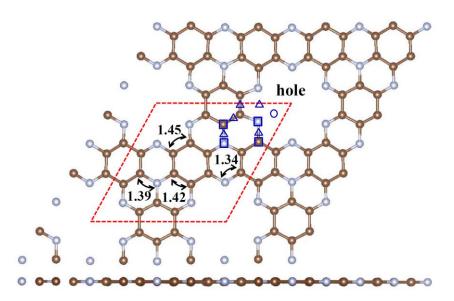


Fig. S1. Top and side views of the pristine (2×2) C₉N₄ monolayer, where the unit cell is enclosed by the red lines. The brown and silvery balls represent C and N atoms, respectively. The key bond lengths (in Å) are also given.

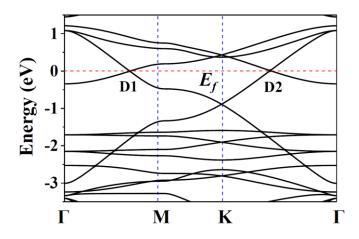


Fig. S2. Band structure of the pristine C_9N_4 monolayer unit cell. The horizontal dashed line denotes the position of Fermi level.

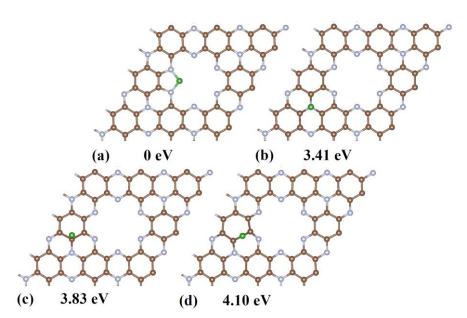


Fig. S3. Top views of the four stable $B-C_9N_4$ and their relative energies.

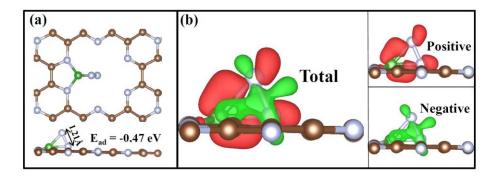


Fig. S4. (a) Top and side views of B-C₉N₄ with the adsorbed N₂ on the side-on pattern, where the adsorption energy and bond length of N₂ are shown. (b) Charge density difference of B-C₉N₄ with the adsorbed N₂ via the side-on pattern. The red and green regions represent the areas of electron accumulation and depletion, respectively. The isosurfaces are taken as 0.005 e/bohr^3 .