Supporting Information

Design and chemical synthesis of a novel coumarin-based framework as a potential chemosensor of a neurotoxic insecticide, azamethiphos

Aman K.K. Bhasin^{a*}, Pushap Raj^b, Pooja Chauhan^c, Sanjay K. Mandal^d, Savita Chaudhary^c Narinder Singh^b, Navneet kaur^c

^aDAV College, Sector 10, Chandigarh (India)-160010

^bDepartment of Chemistry, Indian Institute Technology Ropar, Punjab, 140001, India.

^cDepartment of Chemistry, Panjab University Chandigarh 160014, India

^dDepartment of Chemical Sciences, Indian Institute of Science Education and Research, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab, 140306, India

*Corresponding author (Aman KK Bhasin); E-mail: akkb8785@gmail.com; Tel: +91-8557895390.

Contents

Figure S1.¹H NMR spectrum of ligand L in dmso-d6.

Figure S2.¹³C NMR spectrum of ligand L in dmso-*d*6.

Figure S3.Mass spectrum of ligand L determined by electrospray ionization technique (ESI-MS).

Figure S4. Competitive binding experiment between Cu^{2+} and organic nanoparticles A1 in the presence of competing metal ion pool.

Figure S5. Stern-volmer plot for determination of association constant (K_a) between Cu²⁺and organic nanoparticles, A1.

Figure S6. Job plot to determine the stoichiometry of the chemical coordination between the host ligand A1 and guest metal ion Cu^{2+} .

Figure S7.1¹H NMR titration of A1 in presence and absence of Cu^{2+} in dmso-*d6* (H^a and H^b denote hydroxyl proton and iminic hydrogen of A1, respectively)

Figure S7.2¹H NMR titration of A1 in presence of Cu²⁺and azamethiphos in dmso-*d6* (H^a and H^b denote hydroxyl proton and iminic hydrogen of A1, respectively)

Figure S8. Benesi-Hildebrand plot to determine the binding constant between $Cu^{2+}A1$ with azamethiphos where F_0 and F denote the fluorescence emission intensity of the copper-bound receptor complex $Cu^{2+}A1$ in the absence and presence of azamethiphos (analyte), respectively.[G] represents the molar concentration of azamethiphos.

Figure S9. Job plot to determine the stoichiometry of the binding interaction between the host complex $Cu^{2+}A1$ and azamethiphos (analyte). [H] and [G] represent the molar concentration of the host complex $Cu^{2+}A1$ and azamethiphos, respectively

Figure S10. Competitive binding experiment of copper ligand ensemble $(Cu^{2+}A1)$ towards azamethiphos in the presence of select organophosphate pesticides

Figure S11. ³¹P NMR spectrum of azamethiphos in the presence and absence of copper-ligand ensemble, Cu²⁺A1

Figure S12. Fluorescence profile of $Cu^{2+}A1$ (50µM ; $\lambda_{em} = 430$ nm) in presence of a library of select anions (50 µM) in aqueous medium

Figure S13. Fluorescence titration studies of azamethiphos (λ_{em} = 330 nm) with Cu²⁺ (0- 50 μ M)

Figure S14. Fluorescence profile of azamethiphos ($\lambda_{em} = 330 \text{ nm}$) in the presence of (i) Cu²⁺ (ii) ligand (A1) and (iii) ligand-copper ensemble (A1·Cu²⁺)

Figure S15. Cyclical fluctuations in fluorescence intensity ($\lambda_{em} = 430 \text{ nm}$) of title ligand A1 upon sequential dosage of azamethiphos (100 - 40 μ M) and Cu²⁺ (50-10 μ M) in an alternate pattern

Figure S16. Fluorescence studies in deionized water and select real water samples (tap water, rain water and well water) of (a) A1 ($\lambda_{em} = 430$ nm) upon spiking with Cu²⁺ (10, 20, 30, 40 and 50 μ M) and (b) A1 Cu²⁺ ($\lambda_{em} = 440$ nm) upon spiking with azamethiphos (10, 20, 30, 40 and 50 μ M)

Figure S17. Fully labeled molecular structure of ligand L

Table S1. Crystal data and structure refinement for ligand L

Table S2. Selected bond lengths (Å) of L

Table S3. Selected bond angles (A°) of L

Figure S1. ¹H NMR spectrum of ligand L in dmso-*d6* (H^a and H^b denote hydroxyl and iminic protons, respectively).³¹

Figure S2.¹³C NMR spectrum of ligand L in dmso-d6.

Figure S3. Mass spectrum of ligand L via electrospray ionization technique (positive mode)

Figure S4. Competitive binding experiment of title ligand A1 with Cu^{2+} in the presence of competing select metal ions.

Figure S5. Stern-Volmer plot for determination of association constant (K_a) between Cu^{2+} and organic nanoparticles A1

Figure S6. Job plot to determine the stoichiometry of the chemical coordination between the host ligand A1 and guest metal ion Cu^{2+} .

Copper-bound receptor ligand A1

Figure S7.1 ¹H NMR titration of A1 in presence and absence of Cu²⁺ in dmso-*d6* (H^a and H^b denote hydroxyl proton and iminic hydrogen of A1, respectively)

Figure S7.2 ¹H NMR titration of A1 in presence of Cu²⁺and azamethiphos in dmso-*d6* (H^a and H^b denote hydroxyl proton and iminic hydrogen of A1, respectively)

Figure S8. Benesi-Hildebrand plot to determine the binding constant between $Cu^{2+}A1$ with azamethiphos where F_0 and F denote the fluorescence emission intensity of the copper-bound receptor complex $Cu^{2+}A1$ in the absence and presence of azamethiphos (analyte), respectively.[G] represents the molar concentration of azamethiphos.

Figure S9. Job plot to determine the stoichiometry of the binding interaction between the host complex $Cu^{2+}A1$ and azamethiphos (analyte). [H] and [G] represent the molar concentration of the host complex $Cu^{2+}A1$ and azamethiphos, respectively

Figure S10. Competitive binding experiment of copper:ligand ensemble (Cu²⁺A1 ; $\lambda_{em} = 440$ nm) towards azamethiphos in the presence of select organophosphate pesticides

Figure S11. ³¹P NMR spectrum of azamethiphos in the presence and absence of copper-ligand ensemble, $Cu^{2+}A1$

Figure S12. Fluorescence profile of $Cu^{2+}A1$ (50µM ; $\lambda_{em} = 430$ nm) in presence of a library of select anions (50µM) in aqueous medium.

Figure S13. Fluorescence titration studies of azamethiphos (100 μ M; λ_{em} = 330 nm) with Cu²⁺ (0-50 μ M)

Figure S14. Fluorescence profile of azamethiphos ($\lambda_{em} = 330 \text{ nm}$) in the presence of (i) Cu²⁺ (ii) ligand (A1) and (iii) ligand-copper ensemble (A1·Cu²⁺)

Figure S15. Cyclical fluctuations in fluorescence intensity of ligand A1($\lambda_{em} = 430$ nm; 10µM) upon sequential dosage of azamethiphos (100 - 40 µM) and Cu²⁺ (50-20 µM) in an alternate pattern.

Figure S16. Fluorescence studies in deionized water and select real water samples (tap water, rain water and well water) of (a) A1 (λ_{em} = 430 nm) upon spiking with Cu²⁺ (10, 20, 30, 40 and 50 µM) and (b) A1 Cu²⁺ (λ_{em} = 440 nm) upon spiking with azamethiphos (10, 20, 30, 40 and 50 µM)

Figure S17. Fully labeled molecular structure of ligand L $\,$

Chemical formula	C ₁₆ H ₁₃ NO ₃ S	
Formula weight	299.33	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 7.518(7) Å	$\alpha = 70.671(10)^{\circ}$
	b = 9.118(9) Å	$\beta = 71.668(11)^{\circ}$
	c = 11.293(11) Å	$\gamma = 78.323(11)^{\circ}$
Volume	689.2(11) Å ³	
Z	2	
Density (calculated)	1.442 g/cm ³	
Absorption coefficient	0.244 mm ⁻¹	
F(000)	312	

Table S1. Crystal data and structure refinement for ligand L

Theta range for data collection	1.98 to 25.16°	
Index ranges	-8<=h<=8, -10<=k<=10, -	
-	13<=l<=13	
Reflections collected	8677	
Independent reflections	2461 $[R(int) = 0.0180]$	
Coverage of independent	99.9%	
reflections		
Absorption correction	multi-scan	
Structure solution	direct methods	
technique		
Structure solution program	SHELXS-97 (Sheldrick, 2008)	
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXL-97 (Sheldrick, 2008)	
Function minimized	$\Sigma w(F_0^2 - F_c^2)^2$	
Data / restraints /	2461 / 0 / 192	
parameters		
Goodness-of-fit on F ²	1.051	
Final R indices	2186 data; Ι >2σ (Ι)	R1 = 0.0460, wR2 =
	all data	0.1408
		R1 = 0.0503, wR2 =
		0.1461
Weighting scheme	$w=1/[\sigma^2(F_0^2)+(0.0917P)^2+0.2923P]$	
	where $P = (F_0^2 + 2F_c^2)/3$	
Largest diff. peak and hole	0.652 and -0.494 eÅ ⁻³	

Table S2. Bond lengths (Å) of L $\,$

S1-C8	1.718(3)	S1-C11	1.716(3)
O1-C4	1.370(2)	O1-C12	1.394(2)
O2-C12	1.210(3)	O3-C16	1.256(3)
O3-H4	0.82	N1-C6	1.301(3)
N1-C7	1.476(2)	C1-C2	1.498(3)
C1-H8	0.96	С1-Н9	0.96
C1-H1	0.96	C2-C13	1.356(3)
C2-C3	1.437(3)	C3-C4	1.385(3)
C3-C14	1.431(3)	C4-C5	1.418(3)
C5-C6	1.413(3)	C5-C16	1.457(3)
C6-H10	0.93	C7-C8	1.498(3)
C7-H11	0.97	С7-Н12	0.97
C8-C9	1.381(3)	C9-C10	1.406(4)
С9-Н13	0.93	C10-C11	1.332(4)
С10-Н2	0.93	С11-Н3	0.93
C12-C13	1.428(3)	С13-Н5	0.93
C14-C15	1.353(3)	С14-Н6	0.93

C15-C16	1.441(3)	С15-Н7	0.93	

Table S3.	Bond	angles	(°)	of L
-----------	------	--------	-----	------

C8-S1-C11	92.10(13)	C4-O1-C12	121.98(14)
С16-О3-Н4	109.5	C6-N1-C7	122.80(16)
С2-С1-Н8	109.5	С2-С1-Н9	109.5
H8-C1-H9	109.5	C2-C1-H1	109.5
H8-C1-H1	109.5	Н9-С1-Н1	109.5
C13-C2-C3	119.12(17)	C13-C2-C1	120.65(18)
C3-C2-C1	120.23(18)	C4-C3-C14	116.83(18)
C4-C3-C2	118.65(18)	C14-C3-C2	124.51(17)
O1-C4-C3	121.11(17)	O1-C4-C5	115.37(15)
C3-C4-C5	123.53(17)	C6-C5-C4	120.25(17)
C6-C5-C16	121.06(17)	C4-C5-C16	118.68(16)
N1-C6-C5	124.29(17)	N1-C6-H10	117.9
C5-C6-H10	117.9	N1-C7-C8	112.65(16)
N1-C7-H11	109.1	С8-С7-Н11	109.1
N1-C7-H12	109.1	С8-С7-Н12	109.1
H11-C7-H12	107.8	C9-C8-C7	126.54(19)
C9-C8-S1	110.08(16)	C7-C8-S1	123.37(16)
C8-C9-C10	112.5(2)	С8-С9-Н13	123.7
С10-С9-Н13	123.7	С11-С10-С9	113.8(2)
С11-С10-Н2	123.1	С9-С10-Н2	123.1
C10-C11-S1	111.5(2)	С10-С11-Н3	124.2
S1-C11-H3	124.3	O2-C12-O1	115.57(17)
O2-C12-C13	127.85(18)	O1-C12-C13	116.58(17)
C2-C13-C12	122.53(18)	С2-С13-Н5	118.7
С12-С13-Н5	118.7	C15-C14-C3	122.29(17)
С15-С14-Н6	118.9	С3-С14-Н6	118.9
C14-C15-C16	122.17(18)	С14-С15-Н7	118.9
С16-С15-Н7	118.9	O3-C16-C15	122.47(18)
O3-C16-C5	121.03(17)	C15-C16-C5	116.49(18)