Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Rationally assembled nonanuclear lanthanide clusters: Dy_9 displays slow relaxation of magnetization and Tb_9 serves as luminescent sensor for Fe³⁺, CrO_4^{2-} and $Cr_2O_7^{2-}$

Yuan Huang,^[a] Yaru Qin,^[a] Yu Ge,^[a] Yanfeng Cui,^[a] Xiamei Zhang,^[a] Yahong Li^{*[a]} and Jinlei Yao^{*[b]}

 [a] College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
 E-mail: liyahong@suda.edu.cn

^[b] Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, 215009.

E-mail address: jlyao@usts.edu.cn

Content

1. ¹ H, ¹³ C NMR and FT-IR spectra of H ₂ L	3
2. Selected bond lengths and angles for five complexes	5
3. IR spectra of five complexes	17
4. PXRD patterns of five complexes	18
5. The Curie-Weiss law fits of four complexes.	19
6. Magnetic field dependence of out-of-phase (χ ") susceptibilities for 4[H ₃ O]·6H ₂ O	20
7. Temperature dependence of the in-phase (χ ') and out-of-phase (χ '') susceptibilities for $4[H_3O] \cdot 6H_2O$ under 1000 Oe dc field	21
8. TG curves for five complexes	22
9. The solid-state excitation and emission spectra of H ₂ L ligand	26
10. PXRD patterns for investigating the stability of complex $3[H_3O] \cdot 3H_2O$	27
11. The Stern-Volmer curve and linear curve of <i>I</i> versus ion/anion concentration for $3[H_3O] \cdot 3H_2O$ among Fe ³⁺ , CrO ₄ ²⁻ and Cr ₂ O ₇ ²⁻	28
12. Simulated and experimental PXRD patterns of $3[H_3O] \cdot 3H_2O$ after detecting Fe ³⁺ , CrO and Cr ₂ O ₇ ²⁻	∂ ₄ ²- 29
13. A comparison of PXRD patterns for the simulated, experimental and measured of $3[H_3O] \cdot 3H_2O$ after the detection of Fe ³⁺ , CrO ₄ ²⁻ and Cr ₂ O ₇ ²⁻	31
14. The XPS of $3[H_3O] \cdot 3H_2O$ before and after detection of Fe ³⁺	32
15. Molecular structures of anionic units of complexes $1[H_3O] \cdot H_2O$, $2[H_3O] \cdot 4H_2O$, $3[H_3O] \cdot 3H_2O$ and $5[H_3O] \cdot 2H_2O$	33

Figure S2. ¹³C NMR spectrum of H₂L.

2. Selected bond length and angles for five complexes

I able S1. Selected bond length (A) for 1-5											
Atom	Atom	Length/Å	Atom	Atom	Length/Å	Atom	Atom	Length/Å			

Table S1. Selected bond length (Å) for 1-5

Atom	Atom	<u>Length/Å</u>	Atom	Atom	Length/Å	Atom	Atom	Length/Å
	Comple Comple	$\frac{x 1}{3}$						
Eu1	Eu2	3.7255(10)	Eu2	02	2.255(8)	Eu3	09	2.6139(14)
Eut	Eu2 ⁱ	3.7255(10)	$Eu2^{1b^2}$	O_3^{1}	2.418(10)	Eu3	0192	2:440(8)
Eut	67	2.834(15)	$Eu2^{1b2}$	072	2.6041(13)	Eu3	0113	2:226(3)
Eu1	88	2.448(8)	Eu2	$010^{2^{1}}$	$2^{2}_{.333}(8)^{2}$	Tb3 Eu3	\mathbf{R}^{10}	2.576(11)
Tb1 Eu1	$82^{2}{8}^{2}{2}$	2.448(8)	Eu2	0	$2^{2}_{.365(8)}^{213(5)}$	δ ^b 3	$E_{u2^2}^{N_{2^2}}$	2.6042(12)
Tb1 Eu1	8^{21}_{81}	2.448(8)	E_{u2}^{Tb2}	012^{1}	$2^{2}_{.378(8)}$	871	$\operatorname{Eu}^{\mathrm{Tb}2^2}_{\mathrm{Eu}2^3}$	2.60427(6)
Tb1 Eu1	$8^{2^{3}}_{8^{3}}$	2405(5)	$E_{\rm u2}^{\rm Tb2}$	0^{123}	$2^{2}_{439}(5)$	871	$\operatorname{Tb2^{1}}_{\operatorname{Eu2^{1}}}$	2.60427(6)
Tb1 Eu1	83	$2^{2}844(5)$	Eu2	N39	2 3 3 5 3 (5)	∂_8^1	$Tb2^{3}$ E113 ²	2.5427(6)
T b1	$O_{10^{3}}^{23}$	2408(5)	Tb2	Engl	3 6878(9)	87	$Tb_{2^{2}}^{2}$	26139(13)
Ŧbl	$O_{10^{1}}^{3^{1}}$	2408(5)	Tb3	$Fu3^2$	368779(5)	Å3	$Tb3^2$	26739(53)
T b1	d^{10}	2408(5)	Eus Fug3	Tb31	3.5772(4)	Å4	Tb3 ¹	261375(8)
Thi	R_{10}^{20}	2,408(5)	ETP3	\mathcal{A}^{3^1}	2201())	oft	$Tb3^3$	2.5375(8)
Tbl	-04_{2}	22826(8)	Eu5 E1b3	O^{4}	2.408(10) 2.319(5)	Q_{4}^{010}	$Tb3^2$	2.537,5(8)
Tb2	$Tb2^2$	3,5883(4)	Eus ETb3	Q^{4}	2.539(8) 2.5374(8)	Q	T_{1}^{2}	2.413(5)
Eu2 Tb2	Eu23 Tb2 ¹	3.5884(4)	$_{10}$ Tb3	08 	2.307(8)	012	$Eu2^2$ Tb3 ¹	2.394(5)
	C 1	1	3/2-X, 3/2-Y, 3/2-Y, 3/2-Y, +X, +Z	$+Z;^{2}+Y,3/2$ $Z;^{2}+Y,3/2-X$	-X,+Z; ³ 3/2-Y,+X,+Z ,+Z; ³ 3/2-X,3/2-Y,+Z			
0.11	Comple	x_2 ex_4	C 12	00	0 412(11)	01	C 101	2 5001(11)
Gal Byl		2.800(16)	Ga2 cDw?	09 Mal ¹	2.413(11)	01 Dw3		2.5881(11)
Bul	$Dv \partial^2$	2:442(9))	Gaz ²		2.666(12)	025 Dw3	Gal-	2:442(9)
Bul	-0# 61	2:442(9))	Ga32 GBw2	Ger	3.7096(11) 2.25690(8)	02 ⁵ Dx3	പ്പും	2:442(9) 2 380(6)
Hai Dui	02 ² 01 ²	2.442(9)	Ga32 Gav2	GCH ²	3.7096(9(P)	02 ³ Dx3	GerP ¹	2:442(9) 2 570(7)
Bul	021 011	2.442(9)	Gd32 GDw2	Gଖନ କର୍ଯ୍ୟ	3.7096(11)	$\Theta 2^{3}$	Gdff Dw0 ³	2:339(9)
Hat Byl	032 013	2.446(9)	Ga32 Gav2	-02 ²²	27.339(9)	634	Gal Du ²²	2:440(9) 2 569068)
Bul	63 ³	2.446(9)	Gd32 GDw2	020 610	2.3.30(119)	03- D	Gap Du ²³	2:446(9) 2 560068)
Gal Dw1	03	2:446(9)	Gel32 -Dw2	0410 -N1	2.3986(10)	04	G0/P	$\frac{2}{2}$:446(9)
	031	2.446(9)	Ger 32	O_{2}^{1}	2.369(10)	03	G6/22 Dy 23	$\frac{2}{3}$
882	Ger	3.7097(44)	Gd333	05 ²³	2.428(9))	04P	Gap ²	2:83(2)
882 D-1		3.7097(PV)	Gd333	073	2:237(P0))	044	GG/P ⁵	22.83(2)
882	Gerl' ³	3.7097(PP)	GH33	OHP	2. 396(9(P))	044	GGALA,	22.83(2)»)
883	19 1	2. 5 889(12)	G433	M ³	2. 58 4(9(P)	04 ⁴	Ga33 ²	2:5986(13)
BAZ		2:949(9)	Oly3	GdH ⁴	2:2800(163)	04P	G93 22	2. 5986 (P3)
Baz	D03.	2:979(93)	Oly3	Gtt ^{2°}	2.800(9(6))	64/	GGG31	2.5986(193)
Gd2	O61	2.428(9)	+Y,OTX,+Z	; Ga X1,3/2-	-Y,2Z800(-Y6)X,+Z	05	$Gd3^1$	2.428(9)
Gd2	Gomple	ex 2.368(9)	01	Gd2 ²	2.5881(11)	06	$Gd2^2$	2.428(9)
883	H 98 ¹	23.2628(3(6))	Ho2	$G^{21:0}$	2. 3 :887(1P)	Ho3	N2	2.555(8)
Ho1	Ho1 ²	3.6083(6)	+Y,3/202,+Z	$2;^{2}3/2 + 1 + X$,+Z; ³ 2 /2 42 , 5 (5)/,+Z	03	Ho3 ¹	2.399(6)
Hol	052	2.244(6)	Ho2	0113	2.406(6)	05	Hol	2.244(6)
Ho1	O6 ²	2.331(6)	Ho2	0111	2.406(6)	06	Ho1 ¹	2.331(6)
Ho1	06	2.415(6)	Ho2	O11 ²	2.406(6)	09	Ho3 ¹	2.324(6)
Ho1	07	2.357(7)	Ho2	012	2.776(11)	O10	Ho3 ²	2.5510(9)
Ho1	O11	2.333(6)	Ho3	Ho3 ²	3.5980(6)	O10	Ho31	2.5511(9)
Ho1	O11 ²	2.281(6)	Ho3	02	2.233(6)	O10	Ho3 ³	2.5510(9)
Ho1	012	2.5556(8)	Ho3	03	2.308(6)	011	Ho11	2.281(6)
Ho1	N3 ²	2.545(8)	Ho3	O3 ²	2.399(6)	O12	Ho1 ¹	2.5556(8)

Atom	Atom	Length/Å	Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ho2	O9 ³	2.426(6)	Ho3	08	2.361(7)	012	Ho1 ³	2.5556(8)
Ho2	09	2.426(6)	Ho3	O9	2.289(6)	O12	Ho1 ²	2.5556(8)
Ho2	O9 ²	2.426(6)	Ho3	O9 ²	2.324(6)	N3	Ho11	2.545(8)
Ho2	O9 ¹	2.426(6)	Ho3	O10	2.5510(9)			
		1						

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
	C	omplex	1								
Eu2	Eu1	Eu2 ¹	88.47(3)	O10	Eu1	O10 ¹	119.6(4)	N3	Eu2	Eu2 ³	177.7(3)
O7	Eu1	$Eu2^1$	44.235(16)	O10 ³	Eu1	O10 ²	119.6(4)	N3	Eu2	O7	133.2(3)
O7	Eu1	Eu2	44.235(16)	O10	Eu1	O10 ³	75.35(17)	Eu3 ²	Eu3	Eu1	60.357(9)
O7	Eu1	09	180.0	O10	Eu1	O10 ²	75.35(17)	Eu3 ³	Eu3	Eu1	60.358(9)
08	Eu1	Eu2	75.90(18)	O10 ¹	Eu1	O10 ²	75.35(17)	Eu3 ³	Eu3	Eu3 ²	90.0
O8 ²	Eu1	$Eu2^1$	112.26(19)	Eu2 ³	Eu2	Eu1	60.444(9)	01	Eu3	Eu1	84.3(2)
O8 ³	Eu1	$Eu2^1$	109.89(19)	Eu2 ²	Eu2	Eu1	60.445(9)	01	Eu3	Eu3 ²	110.9(2)
O 8 ¹	Eu1	$Eu2^1$	75.90(18)	Eu2 ²	Eu2	Eu2 ³	90.001(1)	01	Eu3	Eu3 ³	122.8(2)
O8 ²	Eu1	Eu2	109.89(19)	02	Eu2	Eu1	85.9(2)	01	Eu3	O4	84.7(3)
08	Eu1	$Eu2^1$	164.28(18)	02	Eu2	Eu2 ³	110.8(2)	01	Eu3	08	75.9(3)
O8 ³	Eu1	Eu2	109.89(19)	02	Eu2	Eu2 ²	125.0(3)	01	Eu3	O8 ³	85.1(3)
O 8 ¹	Eu1	Eu2	164.28(19)	02	Eu2	03	84.0(4)	01	Eu3	09	133.3(4)
O8 ²	Eu1	07	120.11(18)	02	Eu2	07	134.6(4)	01	Eu3	O11 ³	142.2(3)
O 8 ¹	Eu1	07	120.11(18)	02	Eu2	O10 ²	87.1(3)	01	Eu3	011	127.0(3)
08	Eu1	07	120.11(18)	02	Eu2	O10	76.2(3)	01	Eu3	N1	70.9(3)
O8 ³	Eu1	07	120.11(18)	02	Eu2	O12 ³	125.5(3)	O4	Eu3	Eu1	157.3(3)
O8 ³	Eu1	O 8 ¹	75.42(16)	02	Eu2	012	143.2(3)	04	Eu3	Eu3 ³	141.3(3)
O81	Eu1	O8 ²	75.42(16)	02	Eu2	N3	71.5(4)	04	Eu3	Eu3 ²	105.7(3)
08	Eu1	O8 ³	75.42(16)	03	Eu2	Eu1	159.7(3)	04	Eu3	09	134.7(4)
08	Eu1	O8 ²	75.42(16)	03	Eu2	Eu2 ²	139.0(3)	O4	Eu3	011	72.4(3)
O8 ³	Eu1	O8 ²	119.8(4)	03	Eu2	Eu2 ³	107.2(3)	O4	Eu3	N1	73.1(3)
08	Eu1	O 8 ¹	119.8(4)	03	Eu2	07	134.7(4)	08	Eu3	Eu1	40.06(19)
O 8 ¹	Eu1	09	59.89(18)	03	Eu2	O12 ³	72.8(3)	O8 ³	Eu3	Eu1	39.9(2)
O8 ³	Eu1	09	59.89(18)	03	Eu2	N3	73.1(4)	08	Eu3	Eu3 ³	96.6(2)
08	Eu1	09	59.89(18)	07	Eu2	Eu1	49.4(4)	O8 ³	Eu3	Eu3 ³	38.68(19)
O8 ²	Eu1	09	59.89(18)	07	Eu2	Eu2 ²	45.12(2)	08	Eu3	Eu3 ²	38.14(19)
O8 ²	Eu1	O10 ³	142.4(3)	07	Eu2	Eu2 ³	45.11(2)	O8 ³	Eu3	Eu3 ²	96.7(2)
08	Eu1	O10 ³	140.3(3)	O10 ²	Eu2	Eu1	40.0(2)	08	Eu3	O4	117.6(3)
O 8 ¹	Eu1	O10	142.4(3)	O10	Eu2	Eu1	40.2(2)	O8 ³	Eu3	O4	157.5(3)
O 8 ¹	Eu1	O10 ³	74.7(3)	O10 ²	Eu2	Eu2 ²	38.8(2)	O8 ³	Eu3	08	79.0(4)
O8 ³	Eu1	O10	74.7(3)	O10	Eu2	Eu2 ²	96.8(2)	O8 ³	Eu3	09	64.8(3)
O 8 ¹	Eu1	O10 ¹	73.3(3)	O10 ³	Eu2	Eu2 ³	96.9(2)	08	Eu3	09	64.4(3)
08	Eu1	O10	73.3(3)	O10	Eu2	Eu2 ³	38.2(2)	08	Eu3	O11 ³	129.9(3)
O8 ²	Eu1	O10	140.3(3)	O10	Eu2	03	119.9(4)	O8 ³	Eu3	O11 ³	75.7(3)
O8 ³	Eu1	O10 ²	142.4(3)	O10 ²	Eu2	03	155.9(3)	08	Eu3	011	74.0(3)
08	Eu1	O10 ¹	142.4(3)	O10	Eu2	07	64.4(3)	O8 ³	Eu3	011	129.2(3)

Table S2.	Selected	bond	angle (°) for 1-5
1 abic 52.	Sciecteu	UUIIU	angie	101 1-5

$O8^1$	Eu1	O10 ²	140.3(3)	O10 ²	Eu2	07	64.8(3)	08	Eu3	N1	143.9(3)
O8 ²	Eu1	O10 ²	73.3(3)	O10 ²	Eu2	O10	79.3(4)	O8 ³	Eu3	N1	84.5(3)
08	Eu1	O10 ²	74.7(3)	O10	Eu2	012	130.2(3)	O8 ³	Eu3	C6 ³	93.1(3)
09	Eu1	$Eu2^1$	135.765(16)	O10 ²	Eu2	O12 ³	129.7(3)	09	Eu3	Eu1	49.6(4)
09	Eu1	Eu2	135.765(16)	O10	Eu2	O12 ³	74.3(3)	09	Eu3	Eu3 ³	45.14(3)
O10 ³	Eu1	Eu2	94.02(19)	O10 ²	Eu2	012	76.0(3)	09	Eu3	Eu3 ²	45.13(3)
O10 ¹	Eu1	$Eu2^1$	38.5(2)	O10	Eu2	N3	143.7(3)	011	Eu3	Eu1	98.8(2)
O10 ¹	Eu1	Eu2	93.55(19)	O10 ²	Eu2	N3	82.9(3)	O11 ³	Eu3	Eu1	100.1(2)
O10 ²	Eu1	Eu2	37.7(2)	012	Eu2	Eu1	100.4(2)	011	Eu3	Eu3 ²	39.34(19)
O10 ³	Eu1	$Eu2^1$	37.7(2)	O12 ³	Eu2	Eu1	99.2(2)	O11 ³	Eu3	Eu3 ²	103.5(2)
O10	Eu1	Eu2	38.5 (2)	O12 ³	Eu2	$Eu2^2$	103.3(2)	O11 ³	Eu3	Eu3 ³	40.7(2)
O10 ¹	Eu1	$Eu2^1$	93.55(19)	O12 ³	Eu2	Eu2 ³	39.7(2)	011	Eu3	Eu3 ³	103.2(2)
O10 ²	Eu1	$Eu2^1$	94.02(19)	012	Eu2	$Eu2^2$	40.9(2)	O11 ³	Eu3	O4	100.8(3)
O10 ³	Eu1	07	59.80(19)	012	Eu2	Eu2 ³	103.6(2)	011	Eu3	09	64.8(3)
O10 ¹	Eu1	07	59.80(19)	012	Eu2	03	98.2(4)	O11 ³	Eu3	09	65.7(3)
O10 ²	Eu1	07	59.80(19)	012	Eu2	07	66.0(3)	O11 ³	Eu3	011	89.7(4)
O10	Eu1	07	59.80(19)	O12 ³	Eu2	07	65.2(3)	011	Eu3	N1	138.7(3)
O10 ¹	Eu1	09	120.20(19)	012	Eu2	O12 ³	89.5(4)	O11 ³	Eu3	N1	75.1(3)
O10	Eu1	09	120.20(19)	012	Eu2	N3	74.1(3)	N1	Eu3	Eu1	121.3(2)
O10 ²	Eu1	09	120.20(19)	O12 ³	Eu2	N3	139.3(3)	N1	Eu3	Eu3 ²	177.9(2)
O10 ³	Eu1	09	120.20(19)	N3	Eu2	Eu1	120.0(3)	N1	Eu3	Eu3 ³	89.9(2)
O10	Eu1	O10 ³	75.35(17)	N3	Eu2	Eu2 ²	88.4(3)	N1	Eu3	09	134.6(2)
	¹ 3/2-X 3/2-Y +Z: ² +Y 3/2-X +Z: ³ 3/2-Y +X +Z										

	Co	omplex	2								
$O2^1$	Gd1	01	119.9(2)	08	Gd2	$Gd1^1$	86.0(3)	$Gd2^3$	01	$Gd1^1$	86.9(4)
02	Gd1	01	119.9(2)	08	Gd2	Gd1 ³	86.0(3)	$Gd2^2$	01	Gd1 ³	86.9(4)
O2 ²	Gd1	01	119.9(2)	08	Gd2	01	134.2(4)	Gd2 ³	01	Gd1 ³	86.9(4)
O2 ³	Gd1	01	119.9(2)	08	Gd2	O3 ¹	76.4(3)	Gd2	01	$Gd1^2$	86.9(4)
02	Gd1	O2 ³	120.1(5)	08	Gd2	03	87.3(4)	Gd2	01	Gd1 ³	86.9(4)
$O2^2$	Gd1	$O2^1$	120.1(5)	08	Gd2	O61	125.6(4)	$Gd2^2$	01	Gd1	86.9(4)
$O2^2$	Gd1	02	75.6(2)	08	Gd2	06	143.3(4)	$Gd2^2$	01	$Gd1^2$	86.9(4)
$O2^2$	Gd1	O2 ³	75.6(2)	08	Gd2	09	83.9(4)	$Gd2^1$	01	Gd1	86.9(4)
$O2^1$	Gd1	O2 ³	75.6(2)	08	Gd2	N3	71.3(4)	$Gd2^1$	01	Gd1 ³	86.9(4)
02	Gd1	$O2^1$	75.6(2)	09	Gd2	Gd1 ³	159.9(3)	Gd2	01	Gd1	86.9(4)
O21	Gd1	O3 ²	140.1(3)	09	Gd2	$Gd1^2$	159.9(3)	$Gd2^1$	01	$Gd1^2$	86.9(4)
O21	Gd1	O3 ³	73.2(3)	09	Gd2	$Gd1^1$	159.9(3)	Gd2 ³	01	$Gd1^2$	86.9(4)
$O2^1$	Gd1	O3 ¹	74.8(3)	09	Gd2	01	135.3(4)	$Gd2^3$	01	Gd1	86.9(4)
O2 ³	Gd1	O3 ²	73.2(3)	09	Gd2	O61	72.9(4)	$Gd2^1$	01	$Gd1^1$	86.9(4)
$O2^2$	Gd1	O31	140.1(3)	09	Gd2	N3	72.8(4)	Gd2	01	$Gd1^1$	86.9(4)

$O2^3$	Gd1	O3 ¹	142.6(3)	N3	Gd2	$Gd1^1$	120.1(3)	$Gd2^2$	01	$Gd1^1$	86.9(4)
02	Gd1	O3 ²	142.6(3)	N3	Gd2	Gd1 ³	120.1(3)	$Gd2^1$	01	$Gd2^3$	89.83(4)
$O2^2$	Gd1	O3 ³	142.6(3)	N3	Gd2	$Gd1^2$	120.1(3)	$Gd2^2$	01	Gd2 ³	89.83(4)
O2 ³	Gd1	O3 ³	74.8(3)	Gd1 ³	Gd3	$Gd1^2$	0.00(3)	$Gd2^1$	01	Gd2	89.83(4)
O2 ²	Gd1	03	73.2(3)	O2 ²	Gd3	$Gd1^2$	40.2(2)	Gd2	01	Gd2 ³	173.8(7)
O2	Gd1	O31	73.2(3)	02	Gd3	$Gd1^2$	40.1(2)	$Gd2^2$	01	$Gd2^1$	173.8(7)
02	Gd1	03	74.8(3)	$O2^2$	Gd3	Gd1 ³	40.2(2)	$Gd2^2$	01	Gd2	89.83(4)
$O2^2$	Gd1	O3 ²	74.8(3)	02	Gd3	Gd1 ³	40.1(2)	Gd1	02	Gd1 ³	0.00(5)
$O2^1$	Gd1	O3	142.6(3)	$O2^2$	Gd3	$Gd1^1$	40.2(2)	Gd1 ³	02	$Gd1^2$	0.00(5)
O2 ³	Gd1	O3	140.1(3)	02	Gd3	$Gd1^1$	40.1(2)	Gd1	02	$Gd1^2$	0.00(5)
02	Gd1	O3 ³	140.1(3)	02	Gd3	O2 ²	79.3(4)	Gd1	02	$Gd1^1$	0.00(5)
O3 ³	Gd1	01	59.6(2)	02	Gd3	O4	65.0(4)	$Gd1^2$	02	$Gd1^1$	0.00(5)
03	Gd1	01	59.6(2)	O2 ²	Gd3	O4	64.7(4)	Gd1 ³	02	$Gd1^1$	0.00(5)
O3 ¹	Gd1	01	59.6(2)	$O2^2$	Gd3	O5 ²	74.1(3)	Gd3	02	Gd1 ³	102.0(4)
O3 ²	Gd1	01	59.6(2)	$O2^2$	Gd3	05	130.4(3)	$Gd3^1$	02	Gd1	101.2(3)
O3 ²	Gd1	O3	75.18(19)	02	Gd3	O5 ²	129.8(3)	$Gd3^1$	02	$Gd1^1$	101.2(3)
O3 ¹	Gd1	O3	75.18(19)	02	Gd3	05	75.8(3)	$Gd3^1$	02	Gd1 ³	101.2(3)
O3 ³	Gd1	O3	119.2(4)	02	Gd3	O10	156.5(4)	Gd3	02	Gd1	102.0(4)
O3 ³	Gd1	O3 ²	75.18(19)	$O2^2$	Gd3	O10	118.2(4)	Gd3	02	Gd1 ²	102.0(4)
O3 ¹	Gd1	O3 ²	119.2(4)	$O2^2$	Gd3	N1	144.2(3)	$Gd3^1$	02	Gd1 ²	101.2(3)
O3 ³	Gd1	O31	75.18(19)	02	Gd3	N1	84.4(4)	Gd3	02	$Gd1^1$	102.0(4)
Gd1 ³	Gd2	$Gd1^1$	0.00(3)	O4	Gd3	$Gd1^1$	49.5(4)	Gd3	02	$Gd3^1$	102.9(4)
01	Gd2	Gd1 ³	48.9(4)	O4	Gd3	Gd1 ²	49.5(4)	Gd2	03	Gd1 ²	102.2(4)
01	Gd2	$Gd1^1$	48.9(4)	O4	Gd3	Gd1 ³	49.5(4)	$Gd2^2$	03	$Gd1^1$	101.3(3)
01	Gd2	Gd1 ²	48.9(4)	05	Gd3	Gd1 ³	100.3(2)	$Gd2^2$	03	Gd1 ³	101.3(3)
01	Gd2	N3	133.3(3)	05	Gd3	$Gd1^1$	100.3(2)	$Gd2^2$	03	Gd1 ²	101.3(3)
03	Gd2	Gd1 ²	40.1(2)	O5 ²	Gd3	Gd1 ²	99.1(2)	Gd2	03	Gd1 ³	102.2(4)
O3 ¹	Gd2	$Gd1^1$	40.3(2)	$O5^2$	Gd3	$Gd1^1$	99.1(2)	Gd2	03	Gd1	102.2(4)
O3	Gd2	Gd1 ³	40.1(2)	05	Gd3	Gd1 ²	100.3(2)	Gd2	03	$Gd1^1$	102.2(4)
O3	Gd2	Gd11	40.1(2)	$O5^2$	Gd3	Gd1 ³	99.1(2)	$Gd2^2$	03	Gd1	101.3(3)
O3 ¹	Gd2	Gd1 ³	40.3(2)	05	Gd3	04	66.0(4)	Gd2	03	$Gd2^2$	103.1(3)
O31	Gd2	Gd1 ²	40.3(2)	$O5^2$	Gd3	04	65.3(4)	Gd3 ¹	04	Gd1 ¹	86.1(4)
O3 ¹	Gd2	01	64.1(3)	05	Gd3	$O5^2$	90.2(5)	Gd3 ³	04	Gd1 ²	86.1(4)
03	Gd2	01	64.4(3)	05	Gd3	O10	100.2(4)	Gd3 ³	04	Gd1 ¹	86.1(4)
03	Gd2	O3 ¹	79.5(4)	05	Gd3	N1	74.4(3)	Gd3 ²	04	Gd1 ¹	86.1(4)
O3 ¹	Gd2	$O6^1$	74.3(3)	$O5^2$	Gd3	N1	138.2(3)	$Gd3^1$	04	Gd1 ²	86.1(4)
03	Gd2	06	76.0(3)	07	Gd3	Gd1 ³	84.7(2)	Gd3	04	Gd1	86.1(4)
O3 ¹	Gd2	06	130.3(3)	07	Gd3	Gd1 ¹	84.7(2)	Gd3 ²	04	Gd1	86.1(4)
03	Gd2	O61	129.7(3)	07	Gd3	Gd1 ²	84.7(2)	Gd3 ³	04	Gd1 ³	86.1(4)
O31	Gd2	09	120.0(4)	07	Gd3	$O2^2$	75.6(3)	Gd3	04	Gd1 ²	86.1(4)

03	Gd2	O9	155.6(4)	07	Gd3	02	85.6(4)	Gd3	04	Gd1 ³	86.1(4)
03	Gd2	N3	82.9(4)	07	Gd3	O4	133.6(5)	$Gd3^2$	04	$Gd1^2$	86.1(4)
O31	Gd2	N3	143.7(3)	07	Gd3	O5 ²	126.1(4)	$Gd3^1$	04	Gd1 ³	86.1(4)
O6 ¹	Gd2	Gd1 ³	99.3(2)	07	Gd3	05	142.5(4)	Gd3 ³	04	Gd1	86.1(4)
O61	Gd2	$Gd1^1$	99.3(2)	07	Gd3	O10	84.1(4)	$Gd3^1$	04	Gd1	86.1(4)
06	Gd2	Gd1 ³	100.5(2)	07	Gd3	N1	71.5(4)	Gd3	04	$Gd1^1$	86.1(4)
06	Gd2	$Gd1^2$	100.5(2)	O10	Gd3	Gd1 ³	157.9(3)	$Gd3^2$	04	Gd1 ³	86.1(4)
O61	Gd2	$Gd1^2$	99.3(2)	O10	Gd3	$Gd1^2$	157.9(3)	Gd3 ³	04	$Gd3^2$	89.74(6)
06	Gd2	$Gd1^1$	100.5(2)	O10	Gd3	$Gd1^1$	157.9(3)	Gd3	04	Gd31	89.74(6)
06	Gd2	01	66.4(3)	O10	Gd3	O4	135.1(5)	Gd3 ³	04	Gd3	172.2(9)
O61	Gd2	01	65.6(3)	O10	Gd3	O5 ²	72.7(4)	Gd3	04	$Gd3^2$	89.74(6)
06	Gd2	O6 ¹	89.3(4)	O10	Gd3	N1	72.3(4)	$Gd3^1$	04	$Gd3^2$	172.2(9)
06	Gd2	09	98.0(4)	N1	Gd3	$Gd1^2$	121.6(3)	Gd3 ³	04	$Gd3^1$	89.74(6)
06	Gd2	N3	74.2(4)	N1	Gd3	Gd1 ³	121.6(3)	Gd3	05	$Gd3^1$	99.7(3)
O6 ¹	Gd2	N3	139.2(3)	N1	Gd3	$Gd1^1$	121.6(3)	Gd2	06	$Gd2^2$	99.3(3)
08	Gd2	$Gd1^2$	86.0(3)	N1	Gd3	O4	134.4(3)				

¹+Y,3/2-X,+Z; ³3/2-X,3/2-Y,+Z; ²3/2-Y,+X,+Z

Tb2	Tb1	$Tb2^1$	58.946(9)	Tb2 ³	Tb2	Tb21	90	O3	Tb3	O10	121.2(2)
01	Tb1	Tb2	44.091(8)	01	Tb2	Tb1	49.63(19)	O31	Tb3	O10	155.5(2)
01	Tb1	$Tb2^1$	44.092(8)	01	Tb2	Tb2 ³	45.122(13)	O3	Tb3	N2	143.89(19)
01	Tb1	04	180	01	Tb2	$Tb2^1$	45.121(12)	O31	Tb3	N2	83.5(2)
O2 ²	Tb1	$Tb2^1$	38.52(11)	01	Tb2	N1	134.34(15)	O4	Tb3	Tb1	50.5(2)
O2 ³	Tb1	$Tb2^1$	93.68(12)	02	Tb2	Tb1	40.05(12)	O4	Tb3	Tb3 ³	45.169(16)
$O2^1$	Tb1	$Tb2^1$	37.23(11)	$O2^1$	Tb2	Tb1	40.33(12)	O4	Tb3	$Tb3^1$	45.171(17)
O2	Tb1	$Tb2^1$	92.88(12)	02	Tb2	Tb2 ³	38.90(12)	O4	Tb3	N2	133.94(15)
O2 ³	Tb1	Tb2	92.88(12)	O21	Tb2	Tb2 ³	96.83(12)	06	Tb3	Tb1	101.09(12)
O21	Tb1	Tb2	38.53(11)	$O2^1$	Tb2	$Tb2^1$	37.84(12)	O6 ³	Tb3	Tb1	99.35(11)
02	Tb1	Tb2	37.22(11)	02	Tb2	Tb21	96.99(13)	O6 ³	Tb3	Tb31	103.04(12)
$O2^2$	Tb1	Tb2	93.68(12)	O21	Tb2	01	64.26(18)	06	Tb3	$Tb3^1$	41.36(12)
02	Tb1	01	59.36(12)	02	Tb2	01	64.96(19)	06	Tb3	Tb3 ³	103.53(13)
O21	Tb1	01	59.36(12)	02	Tb2	O21	79.5(2)	O6 ³	Tb3	Tb3 ³	39.59(11)
O2 ³	Tb1	01	59.36(12)	02	Tb2	05	76.89(16)	06	Tb3	03	130.32(18)
O2 ²	Tb1	01	59.36(12)	O21	Tb2	O51	73.95(16)	O6 ³	Tb3	04	64.53(17)
O21	Tb1	O2 ³	118.7(2)	02	Tb2	O51	129.48(17)	06	Tb3	04	65.69(18)
O2 ²	Tb1	02	118.7(2)	$O2^1$	Tb2	09	118.22(19)	06	Tb3	O6 ³	88.9(2)
O21	Tb1	02	74.94(11)	02	Tb2	09	156.78(18)	06	Tb3	O10	95.8(2)
$O2^1$	Tb1	$O2^2$	74.95(11)	$O2^1$	Tb2	N1	144.47(18)	O6 ³	Tb3	N2	139.00(18)
O2 ³	Tb1	O2 ²	74.95(11)	02	Tb2	N1	84.21(19)	O6	Tb3	N2	74.84(19)
O2 ³	Tb1	O2	74.95(11)	O51	Tb2	Tb1	99.18(11)	08	Tb3	Tb1	86.05(13)

$O2^2$	Tb1	O31	139.67(16)	05	Tb2	Tb1	101.21(11)	08	Tb3	Tb3 ³	109.55(13)
$O2^2$	Tb1	03	143.55(16)	05	Tb2	Tb2 ³	41.66(11)	08	Tb3	Tb3 ¹	126.66(14)
$O2^2$	Tb1	O3 ³	76.20(16)	O51	Tb2	Tb2 ³	102.98(12)	08	Tb3	03	75.68(18)
02	Tb1	O3 ¹	76.20(16)	05	Tb2	$Tb2^1$	103.55(12)	08	Tb3	O3 ¹	88.49(18)
O21	Tb1	O3 ³	143.55(16)	O51	Tb2	Tb21	39.58(11)	08	Tb3	04	135.5(2)
O21	Tb1	O3 ²	76.20(16)	05	Tb2	01	66.28(17)	08	Tb3	06	145.12(18)
O2	Tb1	O3 ²	143.55(16)	O51	Tb2	01	64.91(16)	08	Tb3	O6 ³	123.90(18)
O2 ³	Tb1	O3 ²	139.67(16)	05	Tb2	O21	130.40(17)	08	Tb ³	O10	84.7(2)
O2	Tb1	03	73.71(17)	05	Tb2	O51	88.7(2)	08	Tb3	N2	72.23(19)
O21	Tb1	O31	73.70(17)	05	Tb2	09	98.89(19)	O10	Tb3	Tb1	161.19(18)
O2 ³	Tb1	O3 ³	73.70(17)	05	Tb2	N1	74.77(18)	O10	Tb3	Tb31	137.09(19)
$O2^2$	Tb1	O3 ²	73.70(17)	O51	Tb2	N1	138.36(17)	O10	Tb3	Tb3 ³	107.48(16)
O2	Tb1	O3 ³	139.67(16)	O7	Tb2	Tb1	85.19(12)	O10	Tb3	04	132.9(3)
O2 ³	Tb1	O31	143.55(16)	O7	Tb2	Tb2 ³	125.16(13)	O10	Tb3	O6 ³	72.7(2)
O2 ³	Tb1	03	76.20(16)	O7	Tb2	$Tb2^1$	109.84(13)	O10	Tb3	N2	71.9(2)
O21	Tb1	03	139.67(16)	07	Tb2	01	134.0(2)	N2	Tb3	Tb1	120.39(14)
O2 ³	Tb1	O4	120.64(12)	07	Tb2	02	87.06(18)	N2	Tb3	Tb3 ³	178.13(14)
02	Tb1	O4	120.64(12)	07	Tb2	O21	75.64(17)	N2	Tb3	Tb31	89.31(15)
O2 ²	Tb1	O4	120.64(12)	07	Tb2	05	144.43(18)	Tb2 ³	01	Tb1	86.28(19)
$O2^1$	Tb1	O4	120.64(12)	07	Tb2	O51	125.15(18)	$Tb2^1$	01	Tb1	86.28(19)
O3 ²	Tb1	Tb2 ¹	76.89(12)	07	Tb2	09	83.54(19)	Tb2	01	Tb1	86.28(19)
O3 ³	Tb1	Tb2 ¹	113.76(11)	07	Tb2	N1	72.15(19)	Tb2 ²	01	Tb1	86.28(19)
O31	Tb1	Tb2 ¹	109.59(12)	09	Tb2	Tb1	158.08(15)	Tb2 ²	01	Tb2 ¹	89.76(2)
O3 ²	Tb1	Tb2	113.77(12)	09	Tb2	Tb21	106.16(13)	Tb2	01	Tb21	89.76(2)
O31	Tb1	Tb2	76.89(12)	09	Tb2	Tb2 ³	140.44(15)	Tb2	01	Tb2 ³	89.76(2)
O3	Tb1	Tb2	109.59(12)	09	Tb2	01	134.7(2)	Tb2	01	Tb2 ²	172.6(4)
O3	Tb1	Tb2 ¹	164.81(12)	09	Tb2	O51	72.54(17)	Tb2 ²	01	Tb2 ³	89.76(2)
O3 ³	Tb1	Tb2	164.80(12)	09	Tb2	N1	72.71(19)	Tb2 ³	01	Tb2 ¹	172.6(4)
O31	Tb1	01	120.93(12)	N1	Tb2	Tb1	121.19(13)	Tb2	02	Tb1	102.72(19)
O3 ³	Tb1	01	120.93(12)	N1	Tb2	Tb2 ³	89.71(14)	Tb2 ³	02	Tb1	101.14(18)
O3	Tb1	01	120.93(12)	N1	Tb2	Tb2 ¹	177.69(13)	Tb2	02	Tb2 ³	103.26(18)
O3 ²	Tb1	01	120.93(12)	Tb3 ³	Tb3	Tb1	60.650(5)	Tb3	03	Tb1	101.36(19)
O3 ³	Tb1	O3 ²	74.69(11)	Tb3 ¹	Tb3	Tb1	60.651(5)	Tb3 ³	03	Tb1	102.9(2)
03	Tb1	O31	74.69(11)	Tb31	Tb3	Tb3 ³	90.001(1)	Tb3 ³	03	Tb3	103.09(19)
O3 ¹	Tb1	O3 ²	74.69(11)	03	Tb3	Tb1	40.29(12)	Tb3 ¹	04	Tb1	85.6(2)
O3 ³	Tb1	O3 ¹	118.1(2)	O3 ¹	Tb3	Tb1	40.02(13)	Tb3	04	Tb1	85.6(2)
03	Tb1	O3 ²	118.1(2)	O3	Tb3	Tb31	96.87(13)	Tb3 ³	04	Tb1	85.6(2)
03	Tb1	O3 ³	74.68(11)	O31	Tb3	Tb3 ¹	38.96(12)	Tb3 ²	04	Tb1	85.6(2)
O3 ²	Tb1	O4	59.07(12)	O31	Tb3	Tb3 ³	97.02(13)	Tb31	04	Tb3 ²	89.66(3)
03	Tb1	O4	59.07(12)	03	Tb3	Tb3 ³	37.96(12)	Tb3	04	Tb3 ²	171.2(4)

O3 ³	Tb1	04	59.07(12)	O31	Tb3	03	79.5(2)	Tb31	O4	Tb3 ³	171.2(4)
O3 ¹	Tb1	O4	59.07(12)	03	Tb3	04	64.8(2)	Tb3 ³	04	Tb3 ²	89.66(3)
O4	Tb1	Tb2	135.909(8)	O31	Tb3	04	65.5(2)	Tb3	04	Tb31	89.66(3)
O4	Tb1	$Tb2^1$	135.908(8)	03	Tb3	O6 ³	74.04(16)	Tb3	04	Tb3 ³	89.66(3)
Tb2 ³	Tb2	Tb1	60.528(5)	O31	Tb3	O6 ³	129.59(18)	Tb2	05	Tb2 ³	98.77(16)
Tb2 ¹	Tb2	Tb1	60.528(5)	O31	Tb3	06	76.64(17)	Tb3	06	Tb31	99.04(17)
			13/	2-Y,+X,-	+Z; ² 3/2-X	X,3/2-Y,-	+Z; ³ +Y,3/2-X,+Z	Z			
	С	omplex	4								
Dy2 ¹	Dy1	$Dy2^2$	59.084(11)	$Dy2^1$	Dy2	Dy2 ³	89.998(1)	O3	Dy3	07	130.38(19)
01	Dy1	$Dy2^2$	94.01(13)	01	Dy2	Dy1	40.07(13)	O31	Dy3	09	155.8(2)
O1 ³	Dy1	Dy2 ²	38.54(13)	011	Dy2	Dy1	40.25(13)	O3	Dy3	09	120.5(2)
O1 ²	Dy1	Dy2 ¹	38.54(12)	O1 ¹	Dy2	Dy2 ¹	38.19(12)	O31	Dy3	N2	83.3(2)
O11	Dy1	Dy2 ²	93.48(12)	01	Dy2	Dy21	96.99(13)	O3	Dy3	N2	143.4(2)
01	Dy1	Dy2 ¹	93.48(12)	01	Dy2	Dy2 ³	38.89(13)	O4	Dy3	Dy1	49.9(2)
O1 ¹	Dy1	Dy2 ¹	37.69(12)	O1 ¹	Dy2	Dy2 ³	96.88(13)	O4	Dy3	Dy3 ¹	45.133(18)
O1 ²	Dy1	Dy2 ²	37.69(12)	01	Dy2	O11	79.4(2)	O4	Dy3	Dy3 ³	45.134(18)
O1 ³	Dy1	Dy2 ¹	94.01(13)	01	Dy2	02	65.0(2)	O4	Dy3	N2	133.89(16)
O1 ²	Dy1	O11	75.33(11)	O11	Dy2	02	64.6(2)	O7	Dy3	Dy1	100.77(13)
01	Dy1	O11	75.33(11)	01	Dy2	O51	129.54(19)	O7 ³	Dy3	Dy1	99.48(13)
01	Dy1	O1 ²	119.6(2)	011	Dy2	O51	74.35(18)	O7	Dy3	Dy3 ³	103.44(14)
01	Dy1	O1 ³	75.33(11)	01	Dy2	05	76.55(19)	O7	Dy3	Dy31	41.15(13)
O1 ¹	Dy1	O1 ³	119.6(2)	011	Dy2	05	130.37(19)	O7 ³	Dy3	Dy3 ³	39.83(13)
O1 ²	Dy1	O1 ³	75.33(11)	011	Dy2	O10	117.9(2)	O7 ³	Dy3	Dy31	103.07(14)
O1 ²	Dy1	O2	59.78(12)	01	Dy2	O10	156.9(2)	07	Dy3	04	65.8(2)
01	Dy1	02	59.78(12)	01	Dy2	N1	84.4(2)	O7 ³	Dy3	04	65.0(2)
O11	Dy1	02	59.78(12)	011	Dy2	N1	144.2(2)	O7	Dy3	O7 ³	88.8(3)
O1 ³	Dy1	O2	59.78(12)	02	Dy2	Dy1	49.6(2)	07	Dy3	09	96.8(2)
O1 ²	Dy1	O3 ³	142.95(18)	02	Dy2	$Dy2^1$	45.127(17)	O7	Dy3	N2	74.9(2)
O11	Dy1	O3 ³	139.86(17)	02	Dy2	Dy2 ³	45.126(17)	O7 ³	Dy3	N2	139.0(2)
01	Dy1	O3 ³	73.17(17)	O5 ¹	Dy2	Dy1	99.17(13)	08	Dy3	Dy1	85.73(15)
O1 ³	Dy1	O3 ²	73.16(17)	05	Dy2	Dy1	100.79(13)	08	Dy3	Dy31	125.68(16)
O11	Dy1	O3 ²	142.95(18)	05	Dy2	Dy21	103.46(14)	08	Dy3	Dy3 ³	110.04(15)
01	Dy1	03	75.17(18)	O51	Dy2	Dy2 ³	103.01(13)	08	Dy3	O31	87.4(2)
O1 ²	Dy1	03	139.86(17)	05	Dy2	Dy2 ³	41.31(13)	08	Dy3	03	75.55(19)
O1 ³	Dy1	O3 ³	75.17(18)	O51	Dy2	Dy2 ¹	39.66(13)	08	Dy3	04	134.7(3)
01	Dy1	O3 ²	139.86(17)	05	Dy2	02	66.0(2)	08	Dy3	07	144.4(2)
01	Dy1	O31	142.95(18)	O51	Dy2	02	64.9(2)	08	Dy3	O7 ³	124.9(2)
O1 ¹	Dy1	03	73.16(17)	05	Dy2	O51	88.8(3)	08	Dy3	09	84.9(2)
O1 ²	Dy1	O31	73.16(17)	05	Dy2	O10	99.7(2)	08	Dy3	N2	71.7(2)
O1 ³	Dy1	03	142.95(18)	O5	Dy2	N1	74.9(2)	09	Dy3	Dy1	160.49(18)

O1 ¹	Dy1	O3 ¹	75.17(18)	O51	Dy2	N1	138.2(2)	09	Dy3	Dy3 ¹	137.84(19)
O1 ³	Dy1	O31	139.86(18)	06	Dy2	Dy1	85.00(14)	09	Dy3	Dy3 ³	107.10(17)
O1 ²	Dy1	O3 ²	75.17(18)	06	Dy2	Dy21	110.35(15)	09	Dy3	04	133.6(3)
01	Dy1	O4	120.22(12)	06	Dy2	Dy2 ³	124.35(15)	09	Dy3	O7 ³	72.3(2)
O1 ³	Dy1	O4	120.22(12)	06	Dy2	O11	75.61(19)	09	Dy3	N2	72.5(2)
O1 ²	Dy1	O4	120.22(12)	06	Dy2	01	86.3(2)	N2	Dy3	Dy1	120.27(15)
O1 ¹	Dy1	O4	120.22(12)	06	Dy2	02	133.9(3)	N2	Dy3	Dy3 ³	178.22(15)
02	Dy1	Dy21	44.211(10)	06	Dy2	05	143.7(2)	N2	Dy3	Dy31	89.19(16)
02	Dy1	Dy2 ²	44.211(9)	06	Dy2	O51	126.0(2)	Dy2 ³	01	Dy1	101.2(2)
02	Dy1	O4	180	06	Dy2	O10	83.7(2)	Dy2	01	Dy1	102.2(2)
O31	Dy1	Dy21	76.17(12)	06	Dy2	N1	71.6(2)	Dy2	01	Dy2 ³	102.9(2)
O31	Dy1	Dy2 ²	109.66(12)	O10	Dy2	Dy1	157.67(17)	Dy2	02	Dy1	86.2(2)
O3 ³	Dy1	Dy2 ²	112.82(12)	O10	Dy2	$Dy2^1$	106.05(16)	Dy2 ³	02	Dy1	86.2(2)
O3 ²	Dy1	Dy2 ¹	112.82(12)	O10	Dy2	Dy2 ³	140.95(17)	$Dy2^2$	02	Dy1	86.2(2)
O3 ²	Dy1	Dy2 ²	76.17(12)	O10	Dy2	02	134.8(3)	$Dy2^1$	02	Dy1	86.2(2)
O3	Dy1	Dy2 ¹	109.66(12)	O10	Dy2	O51	72.5(2)	Dy2 ²	02	Dy2	172.3(5)
O3 ³	Dy1	Dy2 ¹	164.44(12)	O10	Dy2	N1	72.7(2)	Dy2 ³	02	Dy2	89.75(3)
O3	Dy1	Dy2 ²	164.44(12)	N1	Dy2	Dy1	121.41(15)	Dy21	02	Dy2	89.74(3)
O3 ²	Dy1	O2	120.34(12)	N1	Dy2	Dy2 ¹	177.62(15)	Dy2 ³	02	Dy21	172.3(5)
O3 ³	Dy1	O2	120.34(12)	N1	Dy2	Dy2 ³	89.86(15)	Dy2 ³	02	$Dy2^2$	89.74(3)
O3	Dy1	O2	120.34(12)	N1	Dy2	02	134.46(15)	Dy21	02	$Dy2^2$	89.74(3)
O3 ¹	Dy1	O2	120.34(12)	Dy3 ³	Dy3	Dy1	60.569(6)	Dy3	03	Dy1	101.2(2)
O3	Dy1	O31	75.21(11)	Dy31	Dy3	Dy1	60.569(6)	Dy3 ³	03	Dy1	102.4(2)
O3	Dy1	O3 ³	75.21(11)	Dy3 ³	Dy3	Dy31	90	Dy3 ³	03	Dy3	102.6(2)
O31	Dy1	O3 ²	75.21(11)	O3	Dy3	Dy1	40.24(13)	$Dy3^1$	04	Dy1	86.1(2)
O3 ³	Dy1	O31	119.3(2)	O31	Dy3	Dy1	40.03(14)	Dy3 ³	04	Dy1	86.1(2)
O3 ³	Dy1	O3 ²	75.21(11)	O3	Dy3	Dy31	96.95(13)	Dy3	04	Dy1	86.1(2)
03	Dy1	O3 ²	119.3(2)	O3	Dy3	Dy3 ³	38.32(12)	Dy3 ²	04	Dy1	86.1(2)
O31	Dy1	04	59.66(12)	O3 ¹	Dy3	$Dy3^{1}$	39.12(13)	$Dy3^3$	04	$Dy3^2$	89.73(3)
03	Dyl Dyl	04	59.66(12)	03^{1}	Dy3	Dy3 ³	97.08(13)	Dy3	04	Dy3 ²	172.2(5)
03^{2}	Dy1	04	59.66(12)	031	Dy3	03	(9.3(3))	$Dy3^{1}$	04	Dy32	89.73(3)
03	Dy1	$D_V 2^2$	$135\ 789(9)$	$O3^1$	Dy3	04	65.3(2)	Dy3	04	$Dy3^{1}$	172.2(3) 89 74(3)
04	Dy1	Dy2 $Dv2^1$	135.789(10)	03	Dy3	O^{-7}	74.61(18)	Dy3	04	Dy3	89.73(3)
$Dy2^1$	Dy2	Dy1	60.457(6)	O3 ¹	Dy3	O7 ³	129.86(19)	Dy2	05	$Dy2^3$	99.03(19)
Dy2 ³	Dy2	Dy1	60.457(6)	O31	Dy3	07	76.60(19)	Dy3	07	Dy31	99.02(19)
-		-	13/2	2-Y,+X,+	-Z; ² +Y,3	/2-X,+Z;	³ 3/2-X,3/2-Y,+Z	5			
	С	omplex	5								
$Ho1^{1}$	Ho1	$Ho1^2$	90	003	Ho2	010	59.75(15)	08	Ho3	032	72.8(2)

HOL	HOI	H01 ²	90	093	H02	010	59./5(15)	08	H03	032	/2.8(2)
O5 ²	Ho1	Ho1 ²	124.59(17)	O9 ¹	Ho2	012	120.25(15)	08	Ho3	O10	132.8(3)
O5 ²	Ho1	Ho1 ¹	109.88(16)	O9 ²	Ho2	012	120.25(15)	08	Ho3	N2	72.0(3)
O5 ²	Ho1	O6 ²	144.4(2)	09	Ho2	012	120.25(15)	09	Ho3	Ho32	97.45(15)

$O5^2$	Ho1	06	125.8(2)	O9 ³	Ho2	012	120.25(15)	092	Ho3	Ho32	38.39(15)
O5 ²	Ho1	O7	84.0(2)	011	Ho2	O9 ¹	143.5(2)	09	Ho3	O3	76.3(2)
O5 ²	Ho1	O11 ²	86.3(2)	011	Ho2	O9 ³	139.4(2)	O92	Ho3	O32	73.9(2)
O5 ²	Ho1	O1 ¹	75.4(2)	011	Ho2	O9 ²	72.9(2)	09	Ho3	O32	129.8(2)
O5 ²	Ho1	O1 ²	133.1(3)	0111	Ho2	O9 ¹	75.6(2)	09	Ho3	08	155.0(2)
O5 ²	Ho1	N3 ²	72.1(2)	O11 ²	Ho2	O9 ³	72.9(2)	092	Ho3	08	121.1(2)
06	Ho1	Ho1 ¹	39.65(13)	O11 ²	Ho2	O9 ¹	139.4(2)	09	Ho3	O92	80.0(3)
O6 ²	Ho1	Ho1 ²	41.38(14)	O11 ²	Ho2	O9 ²	75.6(2)	092	Ho3	O10	65.3(2)
06	Ho1	Ho1 ²	102.75(15)	O11 ³	Ho2	O9 ¹	72.9(2)	09	Ho3	O10	65.8(2)
O6 ²	Ho1	Ho11	103.22(15)	O11 ³	Ho2	O9 ²	143.5(2)	O92	Ho3	N2	143.4(2)
O6 ²	Ho1	06	88.3(3)	011	Ho2	09	75.6(2)	09	Ho3	N2	83.1(2)
O6 ²	Ho1	07	99.3(2)	O11 ³	Ho2	O9 ³	75.6(2)	O10	Ho3	Ho32	45.154(17)
O6 ²	Ho1	011	130.0(2)	O111	Ho2	09	72.9(2)	O10	Ho3	N2	134.00(19)
06	Ho1	O1 ²	65.1(2)	O11 ¹	Ho2	O9 ²	139.4(2)	N2	Ho3	Ho32	178.20(16)
O6 ²	Ho1	O1 ²	66.2(2)	O11 ²	Ho2	09	143.5(2)	C12	01	C15	118.1(9)
O6 ²	Ho1	N3 ²	75.1(2)	O11 ³	Ho2	09	139.4(2)	C14	02	Ho3	143.9(6)
06	Ho1	N3 ²	138.5(2)	O11 ¹	Ho2	O9 ³	143.5(2)	Ho3	03	Ho31	99.7(2)
07	Ho1	Ho1 ²	140.61(18)	O11 ³	Ho2	O10	120.41(16)	C1	03	Ho31	134.9(5)
07	Ho1	Ho11	106.06(16)	O11 ²	Ho2	O10	120.41(16)	C1	03	Ho3	121.3(5)
07	Ho1	O6	72.6(2)	011	Ho2	O10	120.41(16)	C17	O4	C16	116.9(8)
07	Ho1	012	135.1(3)	0111	Ho2	O10	120.41(16)	C21	05	Ho11	140.4(6)
07	Ho1	N3 ²	73.1(2)	011	Ho2	O11 ¹	75.15(15)	Ho11	06	Ho1	99.0(2)
O11 ²	Ho1	Ho1 ²	39.08(16)	011	Ho2	O11 ²	75.15(15)	Ho3	09	Ho2	101.9(2)
011	Ho1	Ho1 ²	96.67(17)	0111	Ho2	O11 ²	119.2(3)	$Ho3^1$	09	Ho2	100.9(2)
O11 ²	Ho1	Ho11	96.82(17)	011	Ho2	O11 ³	119.2(3)	Ho3	09	$Ho3^1$	102.5(2)
011	Ho1	Ho11	38.04(16)	O111	Ho2	O11 ³	75.15(15)	Ho3 ²	O10	Ho2	85.8(2)
011	Ho1	06	74.3(2)	O11 ²	Ho2	O11 ³	75.15(15)	Ho31	O10	Ho2	85.8(2)
O11 ²	Ho1	06	129.3(2)	O11 ²	Ho2	012	59.59(16)	Ho3 ³	O10	Ho2	85.8(2)
O11 ²	Ho1	O6 ²	77.0(2)	O111	Ho2	012	59.59(16)	Ho3	O10	Ho2	85.8(2)
011	Ho1	O7	118.3(2)	011	Ho2	012	59.59(16)	Ho3 ¹	O10	Ho3	89.69(3)
O11 ²	Ho1	07	157.0(2)	O11 ³	Ho2	012	59.59(16)	Ho31	O10	Ho3 ²	171.6(5)
O11 ²	Ho1	011	79.0(3)	012	Ho2	O10	180	Ho3 ²	O10	Ho3	89.69(3)
O11 ²	Ho1	012	64.6(2)	02	Ho3	Ho3 ²	109.85(16)	Ho3 ¹	O10	Ho3 ³	89.69(3)
011	Ho1	012	63.9(2)	02	Ho3	O3 ²	124.0(2)	Ho3 ²	O10	Ho3 ³	89.69(3)
O11 ²	Ho1	N3 ²	84.1(2)	02	Ho3	03	144.8(2)	Ho3	O10	Ho3 ³	171.6(5)
011	Ho1	N3 ²	144.1(2)	02	Ho3	08	85.1(3)	Ho1 ¹	011	Ho1	102.9(2)
012	Ho1	Ho11	45.093(14)	02	Ho3	09	88.2(2)	Ho11	011	Ho2	102.8(3)
012	Ho1	Ho1 ²	45.093(15)	02	Ho3	O9 ²	75.4(2)	Ho1	011	Ho2	101.3(2)
N3 ²	Ho1	Ho1 ²	89.52(18)	02	Ho3	O10	135.4(3)	Ho1 ²	012	Ho1 ³	89.81(3)
N3 ²	Ho1	Ho11	177.86(16)	02	Ho3	N2	71.9(2)	Ho11	012	Ho1	89.81(3)
N3 ²	Ho1	012	134.23(18)	O3 ²	Ho3	Ho3 ²	39.22(14)	Ho1 ²	012	Ho1	89.81(3)
O9 ³	Ho2	O91	75.30(14)	O3	Ho3	Ho3 ²	103.50(16)	Ho1	012	Ho1 ³	173.5(5)
O9 ²	Ho2	O91	119.5(3)	O3	Ho3	O3 ²	89.3(3)	Ho1 ²	012	Ho1 ¹	173.5(5)
O9 ³	Ho2	09	119.5(3)	03	Ho3	08	95.7(3)	$Ho1^1$	012	Ho1 ³	89.81(3)

09)1]	Ho2	09	75.30(14)	O3	Ho3	O9 ²	130.7(2)	Ho1 ²	012	Ho2	86.7(2)
09	3	Ho2	O9 ²	75.30(14)	O3 ²	Ho3	O10	64.5(2)	Ho1	012	Ho2	86.7(2)
09)2]	Ho2	09	75.30(14)	O3	Ho3	O10	65.7(2)	Hol^1	012	Ho2	86.7(2)
0	9]	Ho2	O10	59.75(15)	03	Ho3	N2	74.9(2)	Ho1 ³	012	Ho2	86.7(2)
09)1]	Ho2	O10	59.75(15)	O3 ²	Ho3	N2	139.4(2)				
09)2]	Ho2	O10	59.75(15)	08	Ho3	Ho3+	107.45(19)				
				¹ 1/2	2-Y,+X,+	-Z; ² +Y,1	/2-X,+Z;	³ 1/2-X,1/2-Y,+2	Z			

3. IR spectra of five complexes

Figure S4. IR spectra of $1[H_3O] \cdot H_2O(a)$, $2[H_3O] \cdot 4H_2O(b)$, $3[H_3O] \cdot 3H_2O(c)$, $4[H_3O] \cdot 6H_2O(d)$ and $5[H_3O] \cdot 2H_2O(e)$.

4. PXRD patterns of five complexes

Figure S5. PXRD patterns of $1[H_3O] \cdot H_2O(a)$, $2[H_3O] \cdot 4H_2O(b)$, $3[H_3O] \cdot 3H_2O(c)$, $4[H_3O] \cdot 6H_2O(d)$ and $5[H_3O] \cdot 2H_2O(e)$.

5. The Curie-Weiss law fits of four complexes.

Figure S6. Plot of 1/χ_M versus T for **2**[H₃O]·4H₂O, **3**[H₃O]·3H₂O, **4**[H₃O]·6H₂O and **5**[H₃O]·2H₂O and the linear fits represent the Curie-Weiss law fit at 1 kOe field.

6. Magnetic field dependence of out-of-phase (χ'') susceptibilities for 4[H₃O]·6H₂O.

Figure S7. Magnetic field dependence of out-of-phase (χ'') susceptibilities for $4[H_3O] \cdot 6H_2O$ in the range 0 to 10000 Oe dc field (The temperature at 2 K and the susceptibilities at 1000 Hz frequencies).

7. Temperature dependence of the in-phase (χ ') and out-of-phase (χ '') susceptibilities for

4[H₃O]·6H₂O under 1000 Oe dc field

Figure S8. Temperature dependence of the in-phase χ' (left) and out-of-phase χ'' (right) susceptibilities for 4[H₃O]·6H₂O in the range 2 to 22 K. The susceptibilities at 10 Hz, 32 Hz, 100 Hz 320 Hz, 666 Hz, 780 Hz, 1000 Hz frequencies under 1000 Oe dc field.

8. TG curves for five complexes

(a)

Figure S9. The TG curves of complex $1[H_3O] \cdot H_2O(a)$, $2[H_3O] \cdot 4H_2O(b)$, $3[H_3O] \cdot 3H_2O(c)$, $4[H_3O] \cdot 6H_2O(d)$ and $5[H_3O] \cdot 2H_2O(e)$.

(d)

9. The solid-state excitation and emission spectra of H₂L ligand.

Figure S10. The excitation and emission spectra of $\rm H_2L$ ligand

10. PXRD patterns for investigating the stability of complex $3[H_3O] \cdot 3H_2O$

Figure S11. PXRD patterns for the simulated and measured of 3[H₃O]·3H₂O after soaked in water solutions with different pH values in the range of 3-14 for two days.

11. The Stern-Volmer curve and linear curve of I versus ion/anion concentration for

 $3[{\rm H_3O}]\cdot 3{\rm H_2O}$ among Fe^3+, $CrO_4^{2\text{-}}$ and $Cr_2O_7^{2\text{-}}$

Figure S12. Stern-Volmer plot of I_0/I -1 versus low Fe³⁺ concentration in the aqueous suspension of **3**[H₃O]·3H₂O (left).Linear region of fluorescence intensity for the suspensions of **3**[H₃O]·3H₂O in water upon incremental addition of Fe³⁺ solutions (right).

Figure S13. (a) Stern-Volmer plot of I_0/I -1 versus low CrO_4^{2-} concentration in the aqueous suspension of **3**[H₃O]·3H₂O. (b) Linear region of fluorescence intensity for the suspensions of **3**[H₃O]·3H₂O in water upon incremental addition of CrO_4^{2-} solutions.

Figure S14. (a) Stern-Volmer plot of I_0/I -1 versus low $Cr_2O_7^{2-}$ concentration in the aqueous suspension of **3**[H₃O]·3H₂O. (b) Linear region of fluorescence intensity for the suspensions of **3**[H₃O]·3H₂O in water upon incremental addition of $Cr_2O_7^{2-}$ solutions.

12. Simulated and experimental PXRD patterns of 3[H₃O]·3H₂O after detecting Fe³⁺, CrO₄²⁻

(a)

(b)

Figure S15. Simulated and experimental PXRD patterns of $3[H_3O] \cdot 3H_2O$ after detecting Fe³⁺ (a), CrO₄²⁻ (b) and Cr₂O₇²⁻ (c).

13. A comparison of PXRD patterns for the simulated, experimental and measured of

 $3[{\rm H_3O}]\cdot 3{\rm H_2O}$ after the detection of $Fe^{3+},\, CrO_4{}^{2-}$ and $Cr_2O_7{}^{2-}$

Figure S16. PXRD patterns for simulated, experimental and measured of $3[H_3O] \cdot 3H_2O$ after the detection of Fe³⁺, CrO₄²⁻ and Cr₂O₇²⁻.

14. The XPS of $3[H_3O] \cdot 3H_2O$ before and after detection of Fe^{3+}

Figure S17. The XPS for $3[H_3O] \cdot 3H_2O$ before and after the detection of Fe³⁺.

15. Molecular structures of anionic units of complexes 1[H₃O]·H₂O, 2[H₃O]·4H₂O,
3[H₃O]·3H₂O and 5[H₃O]·2H₂O

(a)

(b)

(d)

Figure S18. The Molecular structures of anionic units of complexes $1[H_3O] \cdot H_2O$ (a), $2[H_3O] \cdot 4H_2O$ (b), $3[H_3O] \cdot 3H_2O$ (c) and $5[H_3O] \cdot 2H_2O$ (d). Hydrogen atoms are omitted for clarity.