Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supplementary Materials

An Amorphous FeNiO_x Thin Film by Anodic Electrodeposition as Electrocatalyst

toward Oxygen Evolution Reaction

Zihao Liang, Xingbo Ge^{*}, Jia Liu

School of Chemistry and Chemical Engineering, Southwest Petroleum University,

Chengdu, Sichuan 610500, P. R. China

*Corresponding author.

Email: xbge@swpu.edu.cn; Fax: 86-28-83037337; Tel: +86-28-83037337

TOF calculation:

The TOF values were calculated by assuming that every metal atom is involved in the catalysis¹:

$$TOF = jS / 4Fn$$

where j (mA/cm²) is the measured current density at $\eta = 470$ mV, *S* is the active surface area of catalyst deposited on ITO, the number 4 means 4 electrons/mol of O₂, *F* is Faraday's constant (96485.3 C/mol), and *n* is the moles of coated metal atom on the electrode calculated from mass loading and the molecular weight of the coated catalysts. The TOF of FeNiO_x is calculated as 0.023 s⁻¹, which is much higher than NiO_x (0.001 s⁻¹) and FeO_x (0.0002 s⁻¹).

Fig. S1 LSV of FeNiO_x catalysts via different electrodeposition CV potentials (in the range of 1.0 - 2.0 V, 1.2 - 1.5 V, 1.2 - 2.0 V (all vs. Ag/AgCl), respectively.) Deposition conditions: ITO substrate, 10 mM nickel(II) sulfate, 5 mM iron(III) sulfate, 0.1 M sodium acetate, pH \approx 5.30, 20 mV s⁻¹, 75 CVs. All electrochemical measurements were performed in a 0.1 M KOH (pH \approx 13.0, scan rate: 10 mV s⁻¹, room temperature).

Fig. S2 The cross-section SEM image of the $FeNiO_x/ITO$ catalyst. Scale bar corresponds to 500 nm.

Fig. S3 XRD patterns of NiO_x/ITO, FeO_x/ITO, FeNiO_x/ITO thin films and blank ITO.

Fig. S4 XPS spectra of NiO_x catalyst: (a) Ni 2p and (b) O 1s spectra.

Fig. S5 XPS spectra of FeO_x catalyst: (a) Fe 2p and (b) O 1s spectra.

Fig. S6 EDS of FeNiO_x catalyst

Fig. S7 (a) The CV of FeNiO_x catalyst measured in a non-Faradaic potential window of 1.05 to 1.15 V vs. RHE. (b) The CV of NiO_x catalyst measured in a non-Faradaic potential window of 1.08 to 1.18 V vs. RHE. (c) The CV of FeO_x catalyst measured in a non-Faradaic potential window of 1.23 to 1.33 V vs. RHE. All the measurements were performed in 1 M KOH at the following scan rates: 5 (red), 10 (orange), 25 (yellow), 50 (green), 100 mV s⁻¹ (blue). (d) Charging current density difference (j_a - j_c) plotted against scan rate. The linear slope is one times that of the C_{dl}. C_{dl} for FeNiO_x, NiO_x, and FeO_x are 19.0, 16.2, 12.4 µF cm⁻², respectively. ECSA for FeNiO_x, NiO_x, and FeO_x are 0.475, 0.405, 0.31 cm², respectively.

Fig. S8 The mass activity of $FeNiO_x$, NiO_x and FeO_x in 0.1 M KOH.

Fig. S9 SEM (a) and XRD pattern (b) of the FeNiO_x after electrolysis.

Catalysts	NiSO4	Fe ₂ (SO ₄) ₃	NaOAc
FeNiO _x	10 mM	5 mM	0.1 M
NiO _x	10 mM		0.1 M
FeO _x		5 mM	0.1 M

Table S1 Concentrations of precursors in electrodeposition baths.

References

1. Gao M R, Cao X, Gao Q, et al. ACS nano, 2014, 8(4): 3970-3978.