Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Coordination chemistry of gold with N-Phosphine Oxide-Substituted Imidazolylidenes (PoxIms)

Lorenzo Branzi,^a Marco Baron, ^a Lidia Armelao,^{a,b} Marzio Rancan,^b Paolo Sgarbossa,^c Claudia Graiff,^d Alexander Pöthig ^e and Andrea Biffis^{*,a}

^{*a.*} Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via F. Marzolo 1, 35131 Padova, Italy.

- ^{b.} ICMATE-CNR, c/o Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via F. Marzolo 1, 35131 Padova, Italy.
- ^{c.} Dipartimento di Ingegneria Industriale, Università degli Studi di Padova, Via F. Marzolo 9, 35131 Padova, Italy.
- ^{d.} Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale. Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
- ^{e.} Catalysis Research Center& Department of Chemistry, TechnischeUniversitätMünchen, Ernst-Otto-Fischer-Strasse 1, 85747, Garching, Germany.

Supporting Information

Crystal data of the new compounds

¹H, ¹³C, ³¹P NMR spectra of the new compounds

Compound	5	6-Cl	7	9-OTf	Pseudo-10
Formula	C ₂₃ H ₃₇ Au Cl N ₂ O P	C ₄₀ H ₆₂ Au Cl N ₄ O ₂ P ₂	C ₂₃ H ₃₇ Au Cl ₃ N ₂ O P	C ₄₁ H ₆₂ AuBr ₂ F ₃ N ₄ O ₅ P ₂ S	C ₄₂ H ₆₅ Au ₂ Br _{3.88} Cl _{2.12} N ₅ O ₂ P ₂
Molecular Weight	620.93	925.30	691.84	1198.73	1513.06
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Orthorhombic
Space group	P 21/c	C 2/c	<i>P</i> 2 ₁ /n	1 2/a	Pbcn
<i>a</i> [Å]	9.9549(18)	16.7669(6)	9.9566(4)	11.5747(3)	22.602(2)
<i>b</i> [Å]	14.877(3)	27.1662(12)	21.0444(8)	28.8162(6)	15.0955(14)
<i>c</i> [Å]	17.809(3)	12.0319(4)	13.5564(6)	14.7781(3)	15.1623(15)
<i>β</i> [°]	96.370(2)	121.124(1)	104.009(2)	99 .269(2)	90
V[ų]	2621.2(8)	4691.5(3)	2756.0(2)	4864.69(19)	5173.1(8)
Temperature (K)	273	290	200	303	99.99
Ζ	4	4	4	4	4
D _{calc} [g·cm ⁻³]	1.574	1.310	1.667	1.637	1.943
μ[cm ⁻¹]	5.791	3.294	5.704	4.831	8.872
F(000)	1232.0	1888.0	1368.0	2392.0	2911.0
Reflections collected	40830	24383	52984	10660	62675
Independent reflections	7944	5334	8422	5570	6166
R(int)	0.0899	0.0571	0.0568	0.0226	0.0872
Refined parameters	272	240	290	297	320
R ₁ [<i>l</i> > 2σ(<i>l</i>)]	R ₁ = 0.0399	R ₁ = 0.0527	R ₁ = 0.0303	R ₁ = 0.0281	R1 = 0.0327
	wR ₂ = 0.0923	wR ₂ = 0.1391	wR ₂ = 0.0851	wR ₂ = 0.0781	wR2 = 0.0560
wR_2 [all data]	R ₁ = 0.0795	R ₁ = 0.0637	R ₁ = 0.0401	R ₁ = 0.0303	R1 = 0.0532
	wR ₂ = 0.1061	wR ₂ = 0.1497	wR ₂ = 0.0932	wR ₂ = 0.0799	wR2 = 0.0608
GOF	1.004	0.921	1.005	1.069	1.027
CCDC	1942490	1942489	1942491	1911218	1942492

Table S1. Crystal data for compounds 5, 6-Cl, 7, 9-OTf and pseudo-10

 $\frac{|ccbc|}{|F_{1}=2|F_{0}-F_{c}|/\Sigma(F_{0}); wR_{2} = [\Sigma[w(F_{0}^{2}-F_{c}^{2})^{2}]/\Sigma[w(F_{0}^{2})^{2}]]^{1/2}}{R_{1} = \Sigma|F_{0}-F_{c}|/\Sigma(F_{0}); wR_{2} = [\Sigma[w(F_{0}^{2}-F_{c}^{2})^{2}]/\Sigma[w(F_{0}^{2})^{2}]]^{1/2}}.$

Compound 9-OTf refinement details.

Mo K α (λ = 0.71073) radiation was used for data collection. Structural solution and refinement were carried out as described in the article experimental section. Methyl groups in the phosphanyl oxide moiety were disordered over two sites, the occupancies of which were constrained to sum to 1.0. To better model this disorder, SADI and RIGU restrains coupled to EADP constrains have been applied. The structure has a highly disordered triflate anion close to a two-fold symmetry axis. The anion was successfully modelled using an idealized molecular geometry.¹

1. I. A. Guzei, J. Appl. Crystallogr., 2014, 47, 806.

Compound 5 ¹H, ¹³C, ³¹P NMR characterization

Figure S1.¹H NMR spectrum of compound 5 in CDCl₃

Figure S2. $^{\rm 13}\text{C}$ NMR spectrum of compound 5 in CDCl_3

Figure S3. ^{31}P NMR spectrum of compound 5 in CDCl₃

Compound 6-AuCl₄ ¹H, ¹³C, ³¹P NMR characterization

Figure S4. ¹H NMR spectrum of compound 6-AuCl₄ in CD₃CN

Figure S5. 1 H NMR spectrum of compound 6-AuCl4 in CDCl₃

Figure S6. ¹³C NMR spectrum of compound 6-AuCl₄ in CDCl₃

Figure S7. ³¹P NMR spectrum of compound 6-AuCl₄ in CDCl₃

Compound 6-OTf ¹H, ¹³C, ³¹P NMR characterization

Figure S8. ¹H NMR spectrum of compound 6-OTf in CD₃CN

Figure S9. ¹³C NMR spectrum of compound 6-OTf in CD₃CN

Figure S10. ^{31}P NMR spectrum of compound 6-OTf in CD_3CN

Figure S11. ¹H-³¹P HMBC (a) and NOESY (b) NMR spectra of compound **6-OTf** in CD₃CN and the resulting magnetization transfers (c).

Figure S12. ¹H NMR spectrum of compound 7 in CD₃CN

Figure S13. ¹³C NMR spectrum of compound 7 in CD₃CN

Figure S14. ³¹P NMR spectrum of compound 7 in CD₃CN

Compound 8 ¹H, ¹³C, ³¹P NMR characterization

Figure S15. ¹H NMR spectrum of compound 8 in CD₃CN

Figure S16.¹³C NMR spectrum of compound 8 in CD₃CN

Figure S17.³¹P NMR spectrum of compound 8 in CD₃CN

Compound 9-OTf ¹H, ¹³C, ³¹P NMR characterization

Figure S18.¹H NMR spectrum of compound 9-OTf in CD₃CN

Figure S19.¹³C NMR spectrum of compound 9-OTf in DMSO-d₆

Figure S20.³¹P NMR spectrum of compound 9-OTf in CD₃CN

Figure S21. ¹H NMR spectrum of compound 9-AuCl₄ in CD₃CN

Figure S22. ¹³C NMR spectrum of compound 9-AuCl₄ in DMSO-d₆

Figure S23. ³¹P NMR spectrum of compound 9-AuCl₄ in CD₃CN

Figure S24. ¹H NMR spectrum of compound 10 in CD₃CN

Figure S25. ¹³C NMR spectrum of compound **10** in CD₃CN

Figure S26. ^{31}P NMR spectrum of compound 10 in CD_3CN