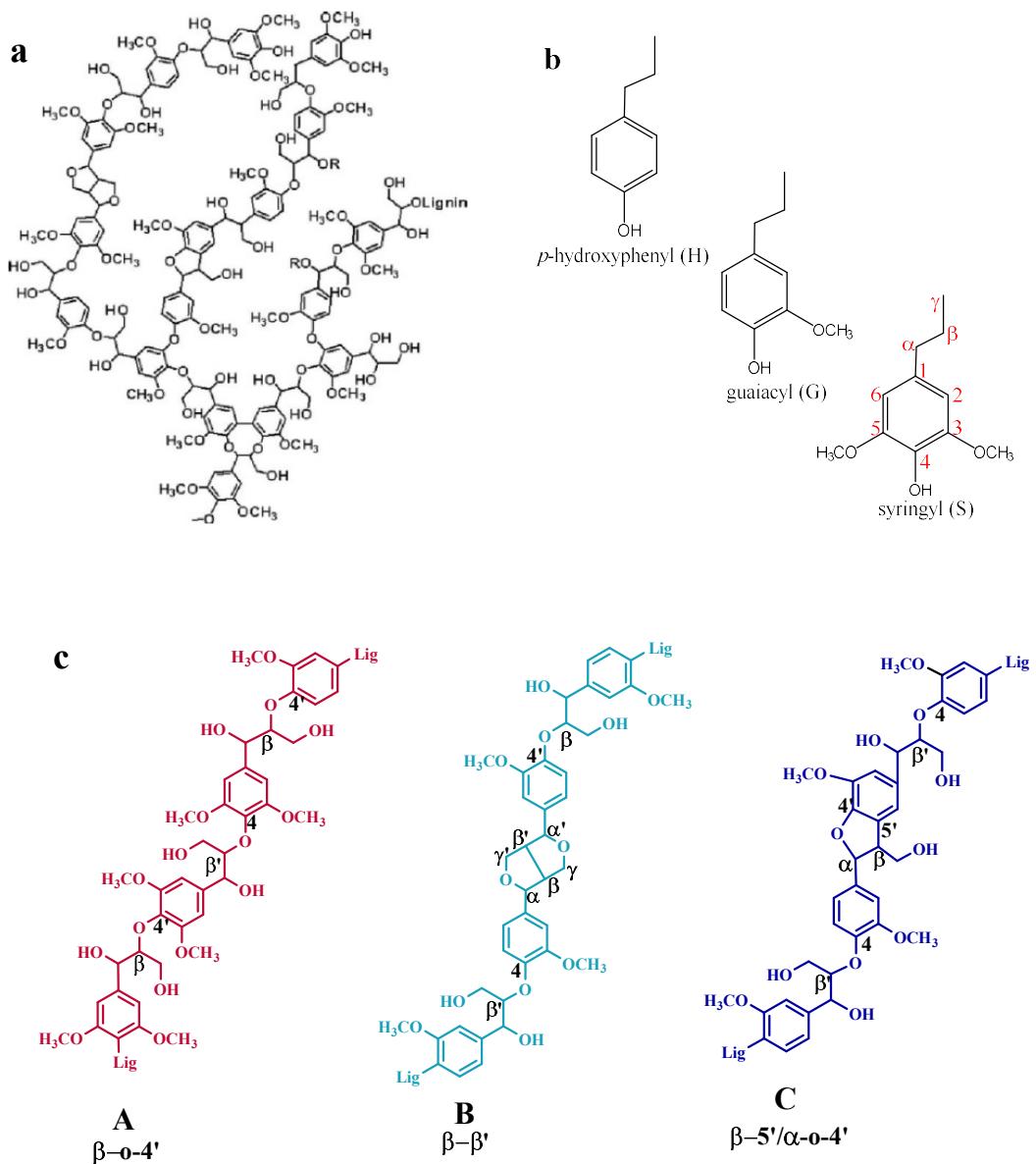


Supporting Information

Stepwise fractionation extracted lignin for high strength lignin-based carbon fibers


Xiaojuan Shi^{a,*}, Zhong Dai^b, Qiping Cao^a, Kefu Chen^c, Jinghui Zhou^{a,*}

^aLiaoning Key Laboratory of Pulp and Paper Engineering, Dalian Polytechnic University, Dalian
116034, China

^b State Key Laboratory of Pulp and Papermaking Engineering, South China University of Technology,
Guangzhou, 510640, China

*Corresponding authors, Tel.: +86 411 86322929.

E-mail address: 15308220001003@xy.dlpu.edu.cn (Xiaojuan Shi) zhoujh@dlpu.edu.cn (Jinghui Zhou)
Mailing address: School of Light industry and Chemical Engineering, Dalian Polytechnic University, 1#
Qinggongyuan, Dalian, China, 116034

Fig.S1 (a) A example of lignin structure; (b) Structural units of lignin; (c) display linear structure in lignin macromolecule

Table S1 Molecular weight and PDI of lignin samples

Lignin samples	M _n (g/mol)	M _w (g/mol)	PDI
AL	2779	6768	2.44
1-step lignin	1593	3530	2.22
2-step lignin	2002	4777	2.39
FAL	3575	6966	1.95

▲ XRD data analysis was based on the following Bragg Equation and Scherrer Equation:

$$d_{002}(\text{nm}) = \frac{\lambda}{2\sin\theta} \quad (\text{Equation S1})$$

$$L_c(\text{nm}) = \frac{k\lambda}{\beta_{002} \cos\theta} \quad (\text{Equation S2})$$

Where d_{002} is distance between two crystalline lattices, θ is the Bragg angle, λ is wavelength of X-ray (0.1540598nm), L_c is graphite microcrystalline stacking thickness, k is the shape factor (set as 0.94), β_{002} is the full width at half maximum of diffraction peak (in radian).

Table S2 Assignments of ^{13}C - ^1H cross-signals in 2D-HSQC spectra of lignin

Label	$\delta_{\text{C}}/\delta_{\text{H}}(\text{ppm})$	Assignments
C_{β}	53.7/3.47	$\text{C}_{\beta}-\text{H}_{\beta}$ in phenylcoumaran (C)
B_{β}	55.0/3.10	$\text{C}_{\beta}-\text{H}_{\beta}$ in β - β (resinol) (B)
$-\text{OCH}_3$	56.0/3.72	C-H in methoxyls
I_{γ}	60.2/4.03	$\text{C}_{\gamma}-\text{H}_{\gamma}$ in cinnamyl alcohol end-groups (I)
A_{γ}	60.3/3.55	$\text{C}_{\gamma}-\text{H}_{\gamma}$ in β -O-4 substructures (A)
A'_{γ}	63.8/3.93	$\text{C}_{\gamma}-\text{H}_{\gamma}$ in γ -acylated β -O-4 (A')
C_{γ}	62.9/3.70	$\text{C}_{\gamma}-\text{H}_{\gamma}$ in phenylcoumaran (C)
A_{α}	72.6/4.86	$\text{C}_{\alpha}-\text{H}_{\alpha}$ in β -O-4 substructures (A)
B'_{α}	83.2/4.98	$\text{C}_{\alpha}-\text{H}_{\alpha}$ in β - β substructures (B')
$\text{A}_{\beta}(\text{G/H})$	84.1/4.38	$\text{C}_{\beta}-\text{H}_{\beta}$ in β -O-4 linked to G/H (A)
$\text{A}_{\beta}(\text{S})$	86.6/4.13	$\text{C}_{\beta}-\text{H}_{\beta}$ in β -O-4 linked to S (A)
C_{α}	87.2/5.45	$\text{C}_{\alpha}-\text{H}_{\alpha}$ in phenylcoumaran (C)
$\text{S}_{2,6}$	104.4/6.71	$\text{C}_{2,6}-\text{H}_{2,6}$ in syringyl units (S)
$\text{S}'_{2,6}$	105.2/7.31	$\text{C}_{2,6}-\text{H}_{2,6}$ in oxidized S units (S')
FA_2	111.7/7.26	C_2-H_2 in ferulate (<i>p</i> -FA)
G_2	111.5/6.92	C_2-H_2 in guaiacyl units (G)
G_5	115.6/6.67	C_5-H_5 in guaiacyl units (G)
G_6	119.6/6.74	C_6-H_6 in guaiacyl units (G)
$\text{PCE}_{3,5}$	116.0/6.86	$\text{C}_{3,5}-\text{H}_{3,5}$ in p-coumarate (PCE)
PCE_8	114.3/6.24	C_8-H_8 in p-coumarate (PCE)
FA_6	122.9/7.13	C_6-H_6 in ferulate (<i>p</i> -FA)
$\text{H}_{2,6}$	128.3/7.11	$\text{C}_{2,6}-\text{H}_{2,6}$ in H units (H)
$\text{PCE}_{2,6}$	130.8/7.44	$\text{C}_{2,6}-\text{H}_{2,6}$ in p-coumarate (PCE)
X_2-X_5	62-77/3.1-3.6	polysaccharides

The relative quantification of β -O-4, β - β , or β -5 linkages and S/G ratio were calculated according to following formulas:

$$I(X)\% = \frac{I(X)}{0.5I(S_{2,6}) + I(G_2) + 0.5I(H_{2,6})} \times 100\% \quad (\text{Equation S3})$$

Where $I(X)$ is the integration of α -position of A(β -O-4), B(β - β), or C(β -5) linkages, and the integration of B_α needs to be divided by 2 because there are two α -positions in B structures. $I(S_{2,6})$ is the integration of $S_{2,6}$, including S and S'. $I(G_2)$ is the integration of G_2 . $I(H_{2,6})$ is the integration of $H_{2,6}$. The integration should be in the same contour level.

$$S/G = 0.5I(S_{2,6})/I(G_2) \quad (\text{Equation S4})$$

Where $I(S_{2,6})$ is the integration of $S_{2,6}$, and $I(G_2)$ is the integration of G_2 .