ELECTRONIC SUPPLEMENTARY INFORMATION FOR:

Chemical repair mechanisms of protein by the superoxide

radical anion

Leonardo Muñoz-Rugeles^{1*}, Annia Galano² and Juan Raúl Alvarez-Idaboy^{1*}

¹Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, México DF 04510, México.

² Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa. San Rafael Atlixco 186, Col. Vicentina. Iztapalapa. C. P. 09340. México D. F. México

Contents: Pag.
Figure S1. Molecular models of (a) tyrosine and (b) tryptophan residues2
Figure S2. Influence of the pH on overall rate constant ($k_{overall}$) and the two components (single electron transfer, k_{SET} , and proton coupled-electron transfer, k_{PCET}), in the repair of TyrO [•] by the two fraction of superoxide radical anion ($O_2^{\bullet-}$ and HO_2^{\bullet}) at 298.15 K
Figure S3. Non-covalent π - π stacking interactions for the highest doubly occupied molecular orbital at triplet transition state geometry for reaction between TyrO [•] and HO ₂ [•] 2
Figure S4. Total electron densities difference for the complexes for the vertical electron transfer in the hydrogen bond complex $[Trp^{\bullet+} \cdots O_2^{\bullet-}]$. Purple and blue zones are related to the electron density rise and decrease, respectively
Figure S5. Pre-equilibrium reaction and parameters used in the kinetic analyses of the SPGET mechanism between $Trp^{\bullet+}$ and $O_2^{\bullet-}$. Structures and spin densities are shown. The first elementary (SPGET-1) corresponding to the protonation of $Trp_{(-H)}^{\bullet}$ is not included
Figure S6. Influence of the pH on overall rate constant ($k_{overall}$) and the three components (single electron transfer, k_{SET} , proton coupled-electron transfer, k_{PCET} , and sequential proton gain-electron transfer, k_{SPGET}), in the repair of the Trp [•] and Trp ^{•+} radicals by the two fraction of superoxide radical anion ($O_2^{\bullet-}$ and HO_2^{\bullet}) at 298.15 K

^{*} To whom correspondence should be addressed. E-mails: <u>leomunozr@comunidad.unam.mx</u>, <u>jidaboy@unam.mx</u>

Figure S1. Molecular models of (a) tyrosine and (b) tryptophan residues.

Figure S2. Influence of the pH on overall rate constant ($k_{overall}$) and the two components (single electron transfer, k_{SET} , and proton coupled-electron transfer, k_{PCET}), in the repair of TyrO[•] by the two fraction of superoxide radical anion ($O_2^{\bullet-}$ and HO_2^{\bullet}) at 298.15 K. (a) Rate constants (k, $M^{-1}s^{-1}$) and (b) branching ratios (Γ , %).

Figure S3. Non-covalent π - π stacking interactions for the highest doubly occupied molecular orbital at triplet transition state geometry for reaction between TyrO[•] and HO₂[•].

Figure S4. Total electron densities difference for the complexes for the vertical electron transfer in the hydrogen bond complex $[Trp^{\bullet+} \square O_2^{\bullet-}]$. Purple and blue zones are related to the electron density rise and decrease, respectively.

Figure S5. Pre-equilibrium reaction and parameters used in the kinetic analyses of the SPGET mechanism between $Trp^{\bullet+}$ and $O_2^{\bullet-}$. Structures and spin densities are shown. The first elementary (SPGET-1) corresponding to the protonation of $Trp_{(-H)}^{\bullet+}$ is not included.

Figure S6. Influence of the pH on overall rate constant ($k_{overall}$) and the three components (single electron transfer, k_{SET} , proton coupled-electron transfer, k_{PCET} , and sequential proton gain-electron transfer, k_{SPGET}), in the repair of the Trp[•] and Trp^{•+} radicals by the two fraction of superoxide radical anion ($O_2^{\bullet-}$ and $HO_2^{\bullet-}$) at 298.15 K. (a) Rate constants (k, $M^{-1}s^{-1}$) and (b) branching ratios (Γ , %).