Supplementary Information Fast and Facile Preparation of S Nanoparticle by Flash Nanoprecipitation for Lithium-sulfur Battery

Zhouliang Tan¹, Yulin Shi^{1*}, Tingting Wei¹, Xin Jia¹, Yin Lv¹, Long Chen^{1*}, Xuhong

Guo^{1,2}*

¹Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P.R. China.

²International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China.

* E-mail: shiyulin@shzu.edu.cn (Yulin Shi), chenlong2012@sinano.ac.cn (Long Chen), guoxuhong@ecust.edu.cn (Xuhong Guo)

struct	structured sulfur hosts.			
Host materials	S content	Ref.		
S-x	99 wt. %	In this paper		
HCS	70 wt. %	1		
Multi shelled HCS	S 86 wt. %	2		
Yolk-Shell S@Ti	O₂ 71 wt. %	3		
Yolk-Shell S@PA	NI 82 wt. %	4		
S@PTh	71.9 wt. %	5		
TiO@C-HS	70 wt. %	6		
SCSPs/mrGO	90 wt. %	7		
S/PPy-MnO ₂	70 wt. %	8		

Table S1. Sulfur loading percentage of Li-S batteries based on various hollow

structured sulfur hosts.	
--------------------------	--

Figure S1 XPS spectra of S-x. C 1s spectra of (a) S-20, (b) S-50, (c) S-80. S 2p spectra of (d) S-20, (e) S-50, (f) S-80.

Figure S2 DLS size distribution of (a) S-20, (b) S-50, (c) S-80, (d) S-110

	Table S2. Physical Parameters for S-x			
Sample	Speed	R _e	DLS size (nm)	PDI
1	20	672.7	1036.7	0.340
2	50	1849.9	763.1	0.109
3	80	3228.9	532.4	0.076
4	110	4809.7	507.9	0.068

 Table S2
 Physical Parameters for S-x

Figure S3 TEM images of (a) S-110 and (b) S-110 after being heated at 155 °C for 5 h

Host materials	Cycle capacity (mAh g ⁻¹)		Ref.	
-	Initial	Retention	Current density	
S-110	1030.7	807.7	50 cycles at 0.1C	In this work
Sulphur-TiO ₂	1030	690	1000 cycles at 0.5C	9
Polyaniline-Coated Sulfur	1101	765	200 cycles at 0.2C	10
Sulfur/Polythiophene	1119.3	830.2	80 cycles at 0.1 A g ⁻¹	11
Polyaniline-Coated Sulfur/Carbon	1405	596	100 cycles at 0.1C	12
Sulfur/Carbon	1285	750	500 cycles at 0.2C	13
SiO ₂ -coated sulfur	1420	763	50 cycles at 0.1C	14
Hollow Carbon-Sulfur	1070	900	150 cycles at 0.2C	15

Table S3. Electrochemical performance of Lithium-Sulfur batteries based on various

 hollow structured sulfur hosts

Sample	$R_{s}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$
S-20	7.6	62.5
S-50	5.08	78.2
S-80	4.375	55.5
S-110	2.105	15.5

Table S4. The EIS spectra fitting of the S-x cathode.

References

- 1. S.A. Ahad, P. Ragupathy, S. Ryu, H.-W. Lee, D.K. Kim, Chem. Commun. 53 (2017) 8782-8785.
- 2. S. Chen, X. Huang, B. Sun, J. Zhang, H. Liu, G. Wang, J. Mater. Chem. A, 2 (2014) 16199-16207.
- 3. Z. Wei Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang, M.T. McDowell, P.-C. Hsu, Y. Cui, Nat. Commun. 4 (2013) 1331.
- 4. Y.Y. Weidong Zhou, Hao Chen, Francis J. DiSalvo and Hećtor D. Abruña, J. Am. Chem. Soc., 135 (2013).
- 5. F. Wu, J. Chen, R. Chen, S. Wu, L. Li, S. Chen, T. Zhao, J. Phy. Chem. C 115 (2011) 6057-6063.
- 6. Z. Li, J. Zhang, B. Guan, D. Wang, L.-M. Liu, X.W. Lou, Nat. Commun. , 7 (2016) 13065.
- B. Campbell, J. Bell, H. Hosseini Bay, Z. Favors, R. Ionescu, C.S. Ozkan, M. Ozkan, Nanoscale, 7 (2015) 7051-7055.
- 8. J. Zhang, Y. Shi, Y. Ding, W. Zhang, G. Yu, Nano Lett. , 16 (2016) 7276-7281.
- 9. Z. Wei Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P.-C. Hsu and Y. Cui, Nat. Commun., 2013, 4, 1331.
- 10. W. Zhou, Y. Yu, H. Chen, F. J. DiSalvo and H. D. Abruña, J. Am. Chem. Soc., 2013, 135, 16736-16743.
- 11. F. Wu, J. Chen, R. Chen, S. Wu, L. Li, S. Chen and T. Zhao, J. Phys. Chem. C, 2011, 115, 6057-6063.
- 12. G.-C. Li, G.-R. Li, S.-H. Ye and X.-P. Gao, Adv. Energy Mater., 2012, 2, 1238-1245.
- 13. Z. Li, J. Zhang, B. Guan, D. Wang, L.-M. Liu and X. W. Lou, Nat. Commun., 2016, 7, 13065.
- 14. B. Campbell, J. Bell, H. Hosseini Bay, Z. Favors, R. Ionescu, C. S. Ozkan and M. Ozkan, Nanoscale, 2015, 7, 7051-7055.
- 15. W. Zhou, X. Xiao, M. Cai and L. Yang, Nano Lett., 2014, 14, 5250-5256.