Vertically stacked bilayer heterostructure $CoFe_2O_4$ @Ni₃S₂ on 3D nickel foam as high-performance electrocatalyst for oxygen evolution reaction Jingyi Wang,^a Zhi Yang,^b Meilin Zhang,^b Yaqiong Gong^{b*}

a Materials Science and Engineering Institute, Taiyuan University of Technology,

Shanxi, 030024.

b Chemical Engineering and Technology Institute, North University of China,

Taiyuan, Shanxi 030051.

E-mail:gyq@nuc.edu.cn;

Keywords: CoFe₂O₄ nanosheets, Ni₃S₂ nanosheets, Oxygen evolution reaction

(OER), Nickel foam, Synergistic effect

Figure S1 the Raman intensity of Ni₃S₂/NF.

Figure S2 Electrochemical double-layer capacitance measurements. The cyclic voltammograms (CVs) measurements with various scan rates for CoFe₂O₄/NF(a) Ni₃S₂/NF (b) CoFe₂O₄@Ni₃S₂/NF (c) in 1.0 M KOH.

Figure S3 The XRD spectra of CoFe₂O₄@Ni₃S₂/NF after OER stability test.

Figure S4 The XPS spectra of $CoFe_2O_4@Ni_3S_2/NF$ after OER stability test: (a) survey, (b) Co 2p, (c) Ni 2p, (d) Fe 2p, (e) S 2p (f) O 1s and (g) C1s regions and the XPS spectra of $CoFe_2O_4@Ni_3S_2/NF$ before OER stability test (h) O 1s and (h) S 2p.

Figure S5. Polarization curves of as-prepared CoFe₂O₄@Ni₃S₂/NF, CoFe₂O₄@Ni₃S₂/CC. CoFe₂O₄/CC and Ni₃S₂/CC.

Figure S6 SEM image of CoFe₂O₄@Ni₃S₂/NF after OER stability test.

Figure S7. Fitted circuit pattern for EIS.

	CoFe ₂ O ₄ @Ni ₃ S ₂ /NF	CoFe ₂ O ₄ /NF	Ni ₃ S ₂ /NF
R _{ct}	15.01Ω	137.1Ω	506Ω