Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Designing a Robust Recyclable Tricopolymer Poly(Ionic Liquid) Macroligand for Copper-Mediated Atom Transfer Radical Polymerization in Non-Aqueous Biphasic System

Richard Ngulube,^{a,b} Olayinka Oderinde,^a Mulenga Kalulu,^{a,b} Rui Pan,^a Onome Ejeromedoghene, ^a Naixu Li^{*a} and Jiancheng Zhou^{*a}

^aJiangsu Key Laboratory for Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China. Email: naixuli@seu.edu.cn (N.L.) and jczhou@seu.edu.cn (J. Z.); Tel: +86 025 52090621; fax: +86 025 52090620

^bSchool of Natural Sciences, Department of Chemistry, The University of Zambia, Lusaka 10101, Zambia

Materials

Methyl methacrylate (MMA, ≥99%, Shanghai Macklin Biochemical Co. Ltd), was purified by through a column packed with activated neutral alumina, passing while 2.2azobisisobutyronitrile (AIBN, ≥97%, Tianjin Guanfu Fine Chemical Research Institute) was purified from ethanol, dried and then stored in a refrigerator at about -2 °C. Other chemical reagents such as poly(ethylene glycol) methyl ether acrylate-480 (PEG₄₈₀-MA) (Aladdin Industrial Corporation), methyl iodide (99%) (Xiya Reagent Shandong, China), ethyl 2bromoisobutyrate (EBiB, 98%), acrylolyl chloride (96%), 2-[(dimethylamino)ethyl] acrylate (99%), ethanolamine (97%), acetonitrile (+99.9 analytical grade), 1,3,5-trimethylbenzene (97%), dimethyl sulfoxide (DMSO, analytical grade), triethylamine (99%), acetonitrile (99%), 2-(chloromethyl)-4-methoxy-3,5-dimethylpyridine hydrochloride (98%) were all acquired from Shanghai Macklin Biochemical Co. Ltd, while copper(II)bromide (CuBr₂, 99.95%, Aladdin Chemistry Co. Ltd), anhydrous methanol (+99.5%), tetrahydrofuran (THF, +99.5%), diethyl ether (+99.5%), dichloromethane (+97.5%) from Sinopharm Chemical Reagent Co. Ltd., anhydrous sodium carbonate (+99.8%), anhydrous potassium carbonate (+99%), anhydrous magnesium sulphate (+99%) from Shanghai Lingfeng Chemical reagent Co. Ltd., were all used as received.

Characterization

The molecular weight distribution (M_w/M_n) values and number-average molecular weight $(M_{n,GPC})$ of the polymeric products were analyzed by Angilent Technologies PL-220 gel permeation chromatograph (GPC) equipped with a refractive-index detector (Angilent Technology), using a PLgel 5µL MIXED-C column (300 x 7.5mm) with measurable molecular weights in the range of 6×10^2 to 5×10^5 g/mol. THF served as the eluent with a flow rate of 1.0

mL/min at a temperature of 40 °C. The GPC samples were injected using Angilent Technologies plus autosampler and calibrated with polystyrene standards purchased from Angilent Technologies. The resultant polymers were analyzed using ¹H NMR spectra recorded on INOVA 600 MHz nuclear magnetic resonance (NMR) instrument where CDCl₃ and DMSO-d₆ served as the solvents and tetramethylsilane (TMS) as the internal standard. The analysis of residual elemental Cu in polymeric solutions was done by inductively coupled plasma mass spectroscopy (ICP-MS).

Fig. S1 ¹H NMR spectrum for the intermediate product 1 using $CDCl_3$ as a solvent and TMS as the internal standard.

Fig. S2 ¹H NMR spectrum for the intermediate product **2** using $CDCl_3$ as a solvent and TMS as the internal standard.

Fig. S3 ¹H NMR spectrum for intermediate product **3** using DMSO-d₆ as a solvent and TMS as the internal standard.

Solvents (2 mL)	25 °C	70 °C	25 °C
Cyclohexane	Ι	Ι	Ι
Heptane	Ι	Ι	Ι
Anisole	М	М	М
o-Xylene	М	М	М
P-Xylene	М	М	М
m-Xylene	М	М	М
1,3,5-	Ι	S	Ι
Trimethylbenzene			
Benzene	М	М	М
Toluene	М	М	М
n-Hexane	Ι	Ι	Ι

Table S1 Screening of the solvents that successfully coupled with PILLL^a (200 mg) for the

TPSC system

I: depicts immiscibility; S: depicts slight miscibility; M: depicts miscibility of PILLL/1,3,5trimethylbenzene solvent pair with MMA under the examined temperatures. ^{*a*} [MA-sLN]/ [PEG₄₈₀MA]/[TMEAM] = 1/10/10.

Entry	Х	Time.	Conv.	$M_{ m n,th}{}^a$	M _{n,GPC}	$M_{\rm w}/M_{\rm n}$
	(mg)	(h)	(%)	(g. mol ⁻¹)	(g. mol ⁻¹)	
1	107	12.5	46.7	4900	3000	1.43
2	214	12.5	59.8	6200	3400	1.28
3	321	12.5	61.5	6400	3800	1.27
4	428	12.5	70.2	7200	4200	1.34

Table S2 Effects of varying the amount of PILLL for TPSC *via* ICAR ATRP system Polymerization conditions: $[MMA]_o/[EBiB]_o/[CuBr_2]_o/[PILLL]_o/[AIBN]_o = 150/1.5/1/x/1, V_{MMA}$ = 0.75 mL, $V_{1,3,4-trimethylbenzene} = 2.0$ mL, temperature = 70 °C. ^a $M_{n,th} = ([M]_o/[initiator]_o) \times M_{w,MMA}$ x Conv.% + M_{EBiB} .

Entry	Х	Time	Conv.	$M_{ m n, th}$ a	M _{n, GPC}	$M_{ m w}/M_{ m n}$
	(mL)	(h)	(%)	(g. mol ⁻¹)	(g. mol ⁻¹)	
1	0.75	6.5	6.4	800	1600	1.18
2	1.0	6.5	36.2	7400	3600	1.25
3	1.5	6.5	46.7	9400	4300	1.30
4	2.0	NA^b	NA	NA	NA	NA

Table S3 Effects of varying the amount of monomer for TPSC via ICAR ATRP system

Polymerization conditions: $[MMA]_o/[EBiB]_o/[CuBr_2]_o/[PILLL]_o/[AIBN]_o = x/1.5/1/3/1$; where (x = (100, 200, 300, 400), $V_{1,3,5\text{-trimethylbenzene}} = 2.0$ mL, temperature = 70 °C. ^{*a*} $M_{n,th} = ([M]_o/[initiator]_o) \times M_{w,MMA} \times \text{Conv.} + M_{EBiB}$. ^{*b*} No biphasic separation.

Entry	Х	Time	Conv.	$M_{ m n,th}{}^a$	$M_{ m n, GPC}$	$M_{ m w}/M_{ m n}$
	(mL)	(h)	(%)	(g. mol ⁻¹)	(g. mol ⁻¹)	
1	2.0	6.5	36.2	7400	3600	1.25
2	2.5	6.5	31.3	4400	3400	1.24
3	3.0	6.5	51.2	6800	5400	1.38
4	3.5	6.5	71.4	9700	6000	1.39

 Table S4 Effects of varying the volume of 1,3,5-trimethylbenzene for TPSC via ICAR ATRP

 system

Polymerization conditions: $[MMA]_o/[EBiB]_o/[CuBr_2]_o/[PILLL]_o/[AIBN]_o = 200/1.5/1/3/1,$ temperature = 70 °C, $V_{1,3,5\text{-trimethylbenzene}} = X. \ ^a M_{n,th} = ([M]_o/[initiator]_o) \times M_{w,MMA} \times \text{Conv.} + M_{EBiB}.$

Entry	Х	Time	Conv.	$M_{ m n, th}$ a	$M_{ m n, \ GPC}$	$M_{ m w}/M_{ m n}$
	(µL)	(h)	(%)	(g. mol ⁻¹)	(g. mol ⁻¹)	
1	3.3	7.5	31.5	12800	8000	1.19
2	5.3	7.5	33.1	8500	7700	1.24
3	6.7	7.5	32.0	6600	7900	1.25
4	10.0	7.5	46.2	6400	7300	1.17

Table S5 Effects of varying the amount of alkyl initiator for TPSC via ICAR ATRP system

Polymerizations conditions: $[MMA]_o/[EBiB]_o/[CuBr_2]_o/[PILLL]_o/[AIBN]_o = 200/x/1/3/1$, where (x = (0.5, 0.8, 1, 1.5) temperature = 70 °C, $V_{1,3,5\text{-trimethylbenzene}} = 2.5 \text{ mL}$. ${}^a M_{n,th} = ([M]_o/[initiator]_o) x M_{w,MMA} x \text{ Conv}$.% + M_{EBiB} .

Entry			Time	Conv.	$M_{ m n, th}{}^c$	M _{n,GPC}	$M_{\rm w}/M_{\rm n}$
	\mathbf{X}^{a}	\mathbf{Y}^b	(h)	(%)	(g. mol ⁻¹)	(g. mol ⁻¹)	
1	0.5	1.0	8.5	51.8	7100	4500	1.27
2	1.0	1.0	8.5	59.4	8100	7900	1.20
3	1.5	1.0	8.5	59.8	8200	8400	1.21
4	2.0	1.0	8.5	NA^d	NA	NA	NA
5	1.0	0.5	8.5	NA^d	NA	NA	NA
6	1.0	1.5	8.5	57.4	7900	6400	1.36
		5.0	() () ()) · · · · ·				

 Table S6 Effects of varying the amount of catalyst and reducing agent for TPSC via ICAR

 ATRP system

Polymerization conditions: $[MMA]_o/[EBiB]_o/[CuBr_2]_o/[PILLL]_o/[AIBN]_o = 200/1.5/x/3/y,$ temperature = 70 °C, $V_{1,3,5\text{-trimethylbenzene}} = 2.5 \text{ mL}.^a$ The molar ratio of $[MMA]_o/[CuBr_2]_o/[AIBN]_o$ = 150/x/1 (x = 0.5, 1, 1.5, 2); ^b the molar ratio of $[MMA]_o/[CuBr_2]_o/[AIBN]_o = 150/y/1$ (y = 0.8, 1, 1.5); ^c $M_{n,th} = ([M]_o/[initiator]_o) \times M_{w,MMA} \times \text{Conv.} + M_{EBiB.}^{a}$ No polymers were obtained.