Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

## **Supporting Information**

Can Huang, a, b Fengyi Wang, a, b Daheng Wang b and Zhiguang Guo\* a, b

## Method 1: Preparation of hierarchical flower-like TiO<sub>2</sub> nanoparticles

The hierarchical flower-like TiO2 nanoparticles were synthesized based on a typical template-free solvothermal method. In the process, anhydrous ethanol (45 ml) and glycerol (15 ml) were mixed in a volume ratio of 3:1 by magnetic stirring at room temperature. And then, TBT (3 ml) were added into drop by drop and stirring for 10 min. The mixture was transferred to stainless-steel autoclaves lined with Teflon, which were sealed and maintained at 180 °C for 24 hours. After cooling to room temperature naturally, white sediments were collected through centrifuged at 7000 rpm for 5 min and washed with anhydrous ethanol for 4 times. After Completely drying at 60 °C, the products were calcined in the air at 450 °C for 2 hours. The hierarchical flower-like TiO2 nanoparticles were prepared for next work.

## Method 2: Mechanical stability experiments

For sandpaper abrasion test, the samples were moved for 10 cm along the ruler with an external force under a load of 200g weight on a sandpaper (600 mesh) and then returned back. This was one abrasion cycle. The contact angles (CAs) and roll-off angles (RAs) of water and n-octane, quality loss of samples was measured every 20 abrasion cycles. To maintain roughness, the sandpaper was replaced by a new one every 50 abrasion cycles.

For scratching test, the surfaces of samples, which were held in a hand, were scratched repeatedly with a sharp knife. For water-resistant flushing test, the flow water at 0.2 MPa impacted on the surfaces of the sample from a vertical distance of 30 cm for 15 min.

## Method 3: Chemical stability experiments

The 98%  $H_2SO_4$  was diluted to 0.1 mol·L<sup>-1</sup> with deionized water. And 40 g NaOH were added in deionized water at a constant volume of 100 ml. Subsequently, the glass slides with superamphiphobic coating were completely immersed into H2SO4 solution (pH=1), NaOH solution(pH=14), saturated NaCl solution(pH=7) and boiling water for 3 h. The variations of CAs and RAs of water and n-octane were measured.

| Liquids            | Surface energy (mN/m) | CAs on the surface of |
|--------------------|-----------------------|-----------------------|
|                    | (20 °C)               | sample (°)            |
| Water              | 72.1                  | $162 \pm 1$           |
| Glycerol           | 63.6                  | $158 \pm 2$           |
| Rapeseed oil       | 35.7                  | $156 \pm 1$           |
| 1,2-Dichloroethane | 35.43                 | $155 \pm 1$           |
| Crude oil          | 35                    | $155 \pm 3$           |
| Toluene            | 28.4                  | $154 \pm 2$           |
| n-Hexadecane       | 25.7                  | $153 \pm 1$           |
| n-Octane           | 21.6                  | $151 \pm 1$           |

**Table S1.** The surface energy of various liquids and contact angles (CAs) on the surface of sample.



**Fig S1.** a) The scratching test of superamphiphobic coating. b) and c) After scratching test, the liquid repellency with water and n-octane.



Fig S2. The water-resistant flushing test of superamphiphobic coating.



**Fig S3**. a), b), d) and e) show the images of glass shields with superamphiphobic coating submersion in different environment including pH=1 (a), pH=7 (b), pH=14 (d) and boiling water (e) after 3 hours. c) and f) show the dependency of n-octane contact angle and sliding angle (degree) of submersion time (min), respectively.



**Fig S4.** The dependency of n-octane contact angle and sliding angle (degree) of ultrasonic time (min), respectively.

Movie 1 The process of sandpaper abrasion test of superamphiphobic coating.

Movie 2 The process of scratching test of superamphiphobic coating.

Movie 3 The process of water-resistant flushing test superamphiphobic coating.

Movie 4 The process of the anti-flipping experiment in different liquids.