Supplementary Information

Lanthanide-Organic Crystalline Framework Material Encapsulated by 1,3,6,8-tetrakis (p-benzoic acid) pyrene: Selective Sensing on Fe^{3+} , $Cr_2O_7^{2-}$ and Colchicine and White-light Emission

Jin Xiao Li^{*a*}, Qing Lin Guan^{*a*}, Yu Wang^{*a*}, Zi Xin You^{*a*},

Yong Heng Xing ^{a*}, Feng Ying Bai ^{a*}, Li Xian Sun ^b

^a College of Chemistry and Chemical Engineering, Liaoning Normal University,
 Huanghe Road 850#, Dalian 116029, P. R. China

^b Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, P. R. China

^{*} Corresponding author. E-mail address: xingyongheng2000@163.com (Y. H. Xing); baifengying2003@163.com (F. Y. Bai)

Supplementary Index

Synthetic process of the ligand H ₂ MCTCA1
Figure S1. The ¹ H-NMR spectrum of the ligand H_2MCTCA
Figure S2. The ¹³ C-NMR spectrum of the ligand H_2MCTCA 2
Figure S3. The HRMS spectrum of the ligand H ₂ MCTCA2
Synthetic process of the H ₄ TBAPy2
Figure S4. The ¹ H-NMR spectrum of H_4 TBAPy ligand in d_6 -DMSO
Figure S5 PXRD patterns of the Eu-MCTCA and Eu-MCTCA@H ₄ TBAPy4
Figure S6 Appearance of Eu-MCTCA and Eu-MCTCA@H ₄ TBAPy4
Figure S7 IR spectra of the Eu-MCTCA and Eu-MCTCA@H ₄ TBAPy4
Figure S8 UV-vis spectra of the Eu-MCTCA and Eu-MCTCA@H ₄ TBAPy5
Figure S9 The solid-state luminescent spectrum for H ₂ MCTCA Eu-MCTCA and
Eu-MCTCA@H ₄ TBAPy at room temperature5
Figure S10 Fluorescence spectra of supernatant of H_4TBAPy and
Eu-MCTCA@H ₄ TBAPy after ultrasonic treatment
Figure S11 CIE chromaticity diagrams of composites with different contents of
H ₄ TBAPy at different excitation wavelengths6
Figure S12 a. Comparison of the fluorescence emission intensity of the
Eu-MCTCA@H ₄ TBAPy-0.75 interacting with different metal ions under the same
conditions b. Fluorescent intensity of different metal ions7
Figure S13 Fitting of the Stern-Volmer plot of detecting Fe ³⁺ 7
Figure S14 The competition experiments for the detection of Fe^{3+} in the presence
of different metal ions
Figure S15 a. Comparison of the luminescence intensity of the
Eu-MCTCA@H ₄ TBAPy-0.75 interacting with different anions under the same
conditions b. Fluorescent intensity of different anions
Figure S16 Fitting of the Stern-Volmer plot of detecting $Cr_2O_7^{2-}$
Figure S17 The competition experiments for the detection of $Cr_2O_7^{2-}$ in the
presence of different anions

Figure S18 PXRD spectra of the Eu-MCTCA@H4TBAPy before and after
soaking in Fe^{3+} , $\text{Cr}_2\text{O}_7^{2-}$ and colchicine solution in 24 h9
Figure S19 UV-vis spectra of Fe^{3+} , $\text{Cr}_2\text{O}_7^{2-}$ and colchicine and emission spectra
of Eu-MCTCA@H ₄ TBAPy-0.7510
Figure S20 Lifetime decay curve of composite Eu-MCTCA@H ₄ TBAPy10
Figure S21 Fluorescence lifetime decay curve of composite
Eu-MCTCA@H ₄ TBAPy-0.75 for detecting Fe ³⁺ 10
Figure S22 Fluorescence lifetime decay curve of composite
Eu-MCTCA@H ₄ TBAPy-0.75 for detecting $Cr_2O_7^{2-}$ 11
Figure S23 Fluorescence lifetime decay curves of Eu-MCTCA for detecting
colchicine11
Figure S24 Fluorescence lifetime decay curves of composite
Eu-MCTCA@H ₄ TBAPy-0.75 for detecting colchicine12
Figure S25 UV-vis spectra of Fe^{3+} , $\text{Cr}_2\text{O}_7^{2-}$ and colchicine and excitation spectra
of Eu-MCTCA@H ₄ TBAPy-0.7512
Figure S26 UV-vis spectrum H ₄ TBAPy13
Figure S27 UV-vis spectra of Eu-MCTCA@H ₄ TBAPy, Fe^{3+} , $Cr_2O_7^{2-}$ and
colchicine13
Table S1 CIE color coordinates of composites with different contents of
H ₄ TBAPy at different excitation wavelengths14
Table S2 Detection of fluorescence quenching rate constants for Fe^{3+} ions by
other materials*14
Table S3 Detection of fluorescence quenching rate constants for $Cr_2O_7^{2-}$ ions by
other materials*15
Table S4 Fluorescence lifetime data of each stage before and after detection15

Synthetic process of the ligand H₂MCTCA

P-aminobenzoic acid (13.72 g, 0.10 mol) was dissolved in concentrated hydrochloric acid solution and cool to 0 °C. Then dissolved sodium nitrite (6.90 g, 0.10 mol) with 30 mL H₂O and add the resulting solution to the above reaction system with stirring for 30 min at 0 °C. After filtration, sodium azide (6.50 g, 0.10 mol) soluble in 20 mL H₂O was added to the solution and continued to stir for 4 h. The white solid (M) was obtained by vacuum filtration. Add 0.60 g of metal sodium (0.60 g, 0.02 mol) to 20 mL cold anhydrous EtOH. The resulting solution was mixed with ethyl acetoacetate (1.62 g, 0.02 mol) and then the intermediate M (3.26 g, 0.02 mol) was added. After stirring for 1 h at 0 °C, heated and refluxed the mixture to completely dissolve precipitate. The pale yellow product was precipitated by adjusting the pH to 6. The H_2MCTCA (4.08 g) was obtained with a yield of 83.08% after filtration under reduced pressure and purification by recrystallization. ¹H-NMR (400 MHz, d_6 -DMSO): δ 13.285 (s, 2H), 8.19 (d, J = 8.53 Hz, 2H), 7.80 (d, J = 8.66 Hz, 2H), 2.57 (s, 3H). ¹³C-NMR (101 MHz, *d*₆-DMSO): 166.8, 162.9, 139.6, 139.0, 137.3, 132.5, 131.1, 125.9, 125.9, 10.3. ESI-Q-TOF-HRMS $([C_{11}H_9N_3O_4Na(M+Na)]^+)$: calcd m/z =270.0491, found m/z = 270.0486.

Figure S1. The ¹H-NMR spectrum of the ligand H_2MCTCA .

Figure S2. The 13 C-NMR spectrum of the ligand H₂MCTCA.

Figure S3. The HRMS spectrum of the ligand H₂MCTCA.

Synthetic process of the H₄TBAPy

Pyrene (10 g, 48 mmol), 300 mL of nitrobenzene, and excess bromine (11.2 mL, 218 mmol) were placed at 120 $^{\circ}$ C for 12 h. The product 1,3,6,8-tetrabromopyrene (M1) was filtered and washed by the solution of sodium hyposulfite (15%). A mixture of M1 (5 g, 9.5 mmol), (4-(methoxycarbonyl)-phenyl)boronic acid (8.5 g, 54.4 mmol), palladium tetrakis-(triphenylphosphine) (0.75 g 0.7 mmol), potassium

carbonate (16.5 g, 121 mmol), and dioxane (300 mL) was reacted for 3 day at 100 °C. The mixture was washed by water and acetone and extracted with chloroform (500 mL). Methanol (300 mL) was added and yellow precipitation occurred. 1,3,6,8-Tetrakis(4-(methoxycarbonyl)phenyl)pyrene (M2) was collected after filtration and then dried under vacuum. Then, KOH (7.1 g, 125.9 mmol), M2 (4.5 g, 6.1 mmol), and 1000 mL mixture of dioxane/H₂O (ratio 5/4) were refluxed for 18 h. The pH value was adjusted to 1 using concentrated hydrochloric acid (12 M) and yellow precipitation occurred. The product 1,3,6,8-tetrakis(pbenzoic acid)pyrene (H₄TBAPy, yellow solid) was collected, washed with water, recrystallized with mixed solution of DMF and dichloromethane, filtrated, and dried under vacuum for 36 h at 60 °C. It is named as H₄TBAPy. ¹H-NMR (400 MHz, DMSO-*d*₆, 298 K): δ 8.18 (s, 2H), 8.14 (d, J = 8.4 Hz, 4H), 8.05 (s, 1H), 7.82 (d, J = 8.4 Hz, 4H).

Figure S4. The ¹H-NMR spectrum of H_4 TBAPy ligand in d_6 -DMSO.

Figure S5 PXRD patterns of the Eu-MCTCA and Eu-MCTCA@H₄TBAPy.

Figure S6 Appearance of Eu-MCTCA and Eu-MCTCA@H₄TBAPy.

Figure S7 IR spectra of the Eu-MCTCA and Eu-MCTCA@H₄TBAPy.

Figure S8 UV-vis spectra of the Eu-MCTCA and Eu-MCTCA@H₄TBAPy.

Figure S9 The solid-state luminescent spectra for $H_2MCTCA(\mathbf{a})$ Eu-MCTCA(**b**) and Eu-MCTCA@H₄TBAPy(**c**) at room temperature.

Figure S10 Fluorescence spectra of supernatant of H₄TBAPy and Eu-MCTCA@H₄TBAPy after ultrasonic treatment.

Figure S11 CIE chromaticity diagrams of composites with different contents of H_4 TBAPy (a. 0.15 mM, b. 0.30 mM, c. 0.60 mM, d. 0.75 mM) at different excitation wavelengths (1. 320 nm, 2. 330 nm, 3. 340 nm, 4. 350 nm, 5. 360 nm, 6. 370 nm, 7. 380 nm, 8. 390 nm).

Figure S12 a. Comparison of the fluorescence emission intensity of the Eu-MCTCA@H₄TBAPy-0.75 interacting with different metal ions under the same conditions (λ_{ex} = 360 nm) **b.** Fluorescent intensity of different metal ions.

Figure S13 Fitting of the Stern-Volmer plot of detecting Fe^{3+} .

Figure S14 The competition experiments for the detection of Fe^{3+} in the presence of different metal ions.

Figure S15 a. Comparison of the luminescence intensity of the Eu-MCTCA@H₄TBAPy-0.75 interacting with different anions under the same conditions (λ_{ex} = 360 nm) **b.** Fluorescent intensity of different anions.

Figure S16 Fitting of the Stern-Volmer plot of detecting $Cr_2O_7^{2-}$.

Figure S17 The competition experiments for the detection of $Cr_2O_7^{2-}$ in the presence of different anions.

Figure S18 PXRD spectra of the Eu-MCTCA@H₄TBAPy before and after soaking in Fe³⁺, $Cr_2O_7^{2-}$ and colchicine solution in 24 h.

Figure S19 UV-vis spectra of Fe^{3+} , $\text{Cr}_2\text{O}_7^{2-}$ and colchicine and emission spectra of Eu-MCTCA@H₄TBAPy-0.75.

Figure S20 Lifetime decay curve of composite Eu-MCTCA@ H_4 TBAPy.

Figure S21 Fluorescence lifetime decay curve of composite Eu-MCTCA@H₄TBAPy-0.75 for detecting Fe^{3+} .

Figure S22 Fluorescence lifetime decay curve of composite Eu-MCTCA@H₄TBAPy-0.75 for detecting $Cr_2O_7^{2^-}$.

Figure S24 Fluorescence lifetime decay curves of composite Eu-MCTCA@H₄TBAPy-0.75 for detecting colchicine.

Figure S25 UV-vis spectra of Fe^{3+} , $\text{Cr}_2\text{O}_7^{2-}$ and colchicine and excitation spectra of Eu-MCTCA@H₄TBAPy-0.75.

Figure S26 UV-vis spectrum H₄TBAPy.

Figure S27 UV-vis spectra of Eu-MCTCA@H₄TBAPy, Fe^{3+} , $Cr_2O_7^{2-}$ and colchicine.

	0.15	0.30	0.60	0.75	
320nm	(0.4188, 0.3271)	(0.3986, 0.3238)	(0.4097, 0.3138)	(0.4001, 0.3299)	
330nm	(0.3817, 0.3439)	(0.3718, 0.3304)	(0.3819, 0.3163)	(0.3615, 0.3345)	
340nm	(0.3691, 0.3504)	(0.3677, 0.3308)	(0.3790, 0.3155)	(0.3557, 0.3357)	
350nm	(0.3553, 0.3429)	(0.3582, 0.3248)	(0.3663, 0.3075)	(0.3482, 0.3301)	
360nm	(0.3792, 0.3277)	(0.3800, 0.3122)	(0.3886, 0.3011)	(0.3885, 0.3228)	
370nm	(0.3026, 0.3005)	(0.2992, 0.2753)	(0.2913, 0.2722)	(0.2980, 0.2980)	
380nm	(0.3234, 0.2840)	(0.3142, 0.2646)	(0.3149, 0.2689)	(0.3331, 0.2932)	
390nm	(0.2594, 0.2519)	(0.2420, 0.2373)	(0.2400, 0.2436)	(0.2555, 0.2707)	

 Table S1
 CIE color coordinates of composites with different contents of

H₄TBAPy(mM) at different excitation wavelengths.

 Table S2
 Detection of fluorescence quenching rate constants

2					
for Fe ³⁺	ions	by	other	materials	*

	Materials	$Ksv(M^{-1})$	References
1)	$[Tb(L)(DMA)] \cdot (DMA) \cdot (0.5H_2O)$	1.91×10^{3}	[1]
2)	$[Eu(IMS1)_2]Cl \cdot 4H_2O$	5.87×10^{3}	[2]
3)	[La(TPT)(DMSO) ₂]·H ₂ O	1.36×10^{4}	[3]
4)	Eu ³⁺ @MIL-53-COOH (Al)	5.12×10^{3}	[4]
5)	EuL_3	4.10×10^{3}	[5]
6)	Tb-DSOA	3.54×10^{3}	[6]
7)	Eu(atpt) _{1.5} (phen)(H ₂ O)	7.60×10^{3}	[7]

*1) $H_3L = 3'$ -hydroxybiphenyl-3,4',5-tricarboxylic acid;

2) IMS1 = 1,3-bis(4-carboxylbenzyl)-imidazolium;

3) $H_3TPT = p$ -terphenyl-3,4",5-tricarboxylate acid;

4) L = 4'-(4-carboxyphenyl)-2,2': 6',2"-terpyridine;

5) Na₂H₂DSOA = disodium-2,2'-disulfonate-4,4'-oxydibenzoic acid;

6) H_2 atpt = 2-aminoterephthalic acid, phen=1,10-phenanthroline.

	Materials	$K_{SV}(M^{-1})$	References
1)	$[Eu_2(H_2O)(DCPA)_3]_n$	8.7×10^3	[8]
2)	Eu ³⁺ @MIL-124	6.0×10^2	[9]
3)	[Eu(Hpzbc) ₂ (NO ₃)] H ₂ O	2.6×10^3	[10]
4)	Eu ³⁺ @MIL-121	4.34×10^{3}	[11]
5)	$Tb(TBOT)(H_2O)](H_2O)_4(DMF)(NMP)_{0.5}$	1.37×10^{4}	[12]

 Table S3
 Detection of fluorescence quenching rate constants

for $Cr_2O_7^{2-}$ ions by other materials*

* 1) H₂DCPA = 4,5-Dichlorophthalic acid;

2) MIL-124 = $Ga_2(OH)_4(C_9O_6H_4)$, 2-NH₂bdc = 2-amino-1,4-benzene dicarboxylate;

3) Hpzbc = 3-(1H-pyrazol-3-yl) benzoate;

4) MIL-121 = Al(OH)(H₂btec) H₂O;

5) TBOT = 2,4,6-tris[1-(3-carboxylphenoxy)ylmethyl]mesitylene, NMP = N-methyl-2-pyrrolidone.

Table S4 Emission lifetime data of the lifetime of each stage

before and after detection.

	τ_1 [amplitude](ms)	$\tau_2[\text{amplitude}] \ (\text{ms})$	$\tau_{ave} \ (ms)$
Eu-MCTCA@H4TBAPy	0.3265443[1.0]	_	0.3265443
Eu-MCTCA@H ₄ TBAPy+Fe ³⁺	0.2769756[0.83]	1.123915[0.16]	0.3170616
Eu-MCTCA@H ₄ TBAPy+Cr ₂ O ₇ ²⁻	0.1231029[0.27]	0.4406017[0.73]	0.2599026
Eu-MCTCA@H ₄ TBAPy+colchicine	0.3205254[1.0]	_	0.3205254
Eu-MCTCA	0.3185820[1.0]	_	0.3185820
Eu-MCTCA+colchicine	0.3059430[1.0]	-	0.3059430

References

- 1. S. Pal, P. K. Bharadwaj, Cryst Growth Des., 2016, 16, 5852-5858.
- 2. Y. Q. Huang, H. Y. Chen, Y. Wang, RSC Advances., 2018, 8, 21444-21450.
- 3. C. Q. Zhang, Y. Yan, Q. H. Pan, Dalton T., 2015, 44, 13340-13346.
- 4. Y. Zhou, H. H. Chen, B. Yan, J. Mater. Chem. A., 2014, 2,13691-13697.
- 5. M. Zheng, H. Q. Tan, Z. G. Xie, ACS Appl. Mater. Inter., 2013, 5, 1078-1083.
- 6. X. Y. Dong, R. Wang, J. Z. Wang, J. Mater. Chem. A., 2015, 3, 641-647.
- 7. Y. Kang, X. J. Zheng, L. P. Jin, J. Colloid. Interf. Sci., 2016, 471, 1-6.
- H. M. He, S. H. Chen, D. Y. Zhang, R. Hao, C. Zhang, E. C. Yang, X. J. Zhao, Dalton Trans., 2017, 46, 13502-13509.
- 9. X.Y. Xu, B. Yan, ACS Appl. Mater. Inter., 2015, 7, 721-729.
- G.P. Li, G. Liu, Y.Z. Li, L. Hou, Y.Y. Wang and Z. H. Zhu, Inorg. Chem., 2016, 55, 3952-3959.
- 11. J.N. Hao, B. Yan, New J Chem., 2016, 40, 4654-4661.
- M. Chen, W.M. Xu, J.Y. Tian, H. Cui, J.X. Zhang, C.S. Liu and M. Du, J. Mater. Chem. C., 2017, 5, 2015-1021.