Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Dysprosium-based linear helicate clusters: syntheses, structures, and

magnetism

Jingjing Lu,^{a,b} Xiao-Lei Li,^a Chaoyi Jin,^a Yang Yu,^{*a} and Jinkui Tang^{*a,b}

^aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
^bSchool of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China

Corresponding Authors: E-mail: yuy@ciac.ac.cn E-mail: tang@ciac.ac.cn

Materials and general procedures.

All chemicals were used as commercially available without further purification. Elemental analysis (C, H, and N) was determined on a PerkinElmer 2400 analyzer. Infrared (IR) spectra were carried out on a Nicolet 6700 Flex FTIR spectrometer equipped with smart iTRTM attenuated total reflectance (ATR) sampling accessory in the range of 500-4000 cm⁻¹. Thermogravimetric analyses (TGA) were conducted using a STA 449 F3 simultaneous thermal analysis from room temperature to 800 °C under N₂ atmosphere with a heating rate of 10 °C·min⁻¹. Magnetic measurements were recorded on a Quantum Design MPMS-XL7 SQUID magnetometer equipped with a 7 T magnet. The direct-current (dc) measurements were measured between 2 and 300 K, with an applied field of 1000 Oe. The alternating-current (ac) measurements were investigated at different frequencies from 1 to 997 Hz, under a 3.0 Oe ac oscillating field and a zero dc field. The experimental magnetic data were corrected for the diamagnetism contribution of all the constituent atoms estimated from Pascal's tables¹ and sample-holder calibration.

X-ray crystallography.

Single crystal X-ray diffraction data (Table S1) for all compounds were collected at 153(2) K on a Bruker Apex II CCD diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods and refined by full-matrix least-squares methods on F² using SHELXTL-2014.² The non-H atoms were refined anisotropically and the H atoms were introduced geometrically and refined using the riding model. Furthermore, the H atoms of some disordered DMF (C85, C88, C92, C94, C98, C99, and C106 for 1, C66, and C69 for 3), and MeOH molecules (C125 for 2) were not added, but were taken into account in the formula. The

large solvent accessible voids in **3** are due to the presence of substantial disordered DMF molecules in this structure. The solvent content is further confirmed by the thermogravimetric analysis (TGA). CCDC 1919733-1919735 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

Fig. S1 Thermogravimetric analyses of compounds 1-3.

Scheme S1 The Keto-Enol tautomerism of the ligand H_4L and reversible deprotonation of its enolic form.

Scheme S2 Binding modes of the H_4L with various deprotonated forms in compound 1 indicated by the Harris notation.³

Scheme S3 Binding modes of the H_4L with various deprotonated forms in compound 2 indicated by the Harris notation.

Scheme S4 Binding modes of the H_4L with various deprotonated forms in compound 3 indicated by the Harris notation.

Scheme S5 Binding modes of NO₃⁻ in compound 3.

Fig. S2 Field dependences of magnetization between 0 and 70 kOe and at temperatures of 1.9, 3.0, and 5.0 K. Insets: Plots of the reduced magnetization M versus HT^{-1} for compound 1.

Fig. S3 Field dependences of magnetization between 0 and 70 kOe and at temperatures of 1.9, 3.0, and 5.0 K. Insets: Plots of the reduced magnetization M versus HT^{-1} for compound **2**.

Fig. S4 Field dependences of magnetization between 0 and 70 kOe and at temperatures of 1.9, 3.0, and 5.0 K. Insets: Plots of the reduced magnetization M versus HT^{-1} for compound **3**.

Fig. S5 Temperature dependence of in-phase (χ') ac susceptibilities for compound 1 under zero dc field.

Fig. S6 Temperature dependence of in-phase (χ') ac susceptibilities for compound 2 under zero dc field.

Fig. S7 Temperature dependence of in-phase (χ') ac susceptibilities for compound 3 under zero dc field.

Fig. S8 Plots of $\ln(\chi''/\chi')$ versus 1/T for compound 1. The solid line represents the best fitting results.

Fig. S9 Plots of $\ln(\chi''/\chi')$ versus 1/T for compound **2**. The solid line represents the best fitting results.

Fig. S10 Plots of $\ln(\chi''/\chi')$ versus 1/T for compound **3**. The solid line represents the best fitting results.

Compound	1	2	3
Formula	$C_{107}H_{147}Cl_4Dy_4N_{30}O_{40}\\$	$C_{126}H_{144}Dy_6N_{18}O_{48}$	$C_{144}H_{198}Dy_{10}N_{52}Na_2O_{84}$
Mr	3285.34	3653.58	5674.34
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	$P2_1/c$	<i>P</i> 2 ₁ /c	$P^{\overline{1}}$
<i>T</i> [K]	153(2)	153(2)	153(2)
λ [Å]	0.71073	0.71073	0.71073
<i>a</i> [Å]	20.0833(16)	16.7394(8)	16.2426(18)
<i>b</i> [Å]	30.421(2)	25.7371(12)	16.2562(17)
<i>c</i> [Å]	21.9915(18)	32.8927(16)	22.592(2)
<i>a</i> [°]	90	90	95.7548(19)
β [°]	104.0349(15)	101.8052(9)	101.601(2)
γ[°]	90	90	113.6049(19)
V [Å ³]	13034.7(18)	13871.2(11)	5244.7(10)
Ζ	4	4	1
$ ho_{ m calcd} [m g \cdot m cm^3]$	1.674	1.749	1.750
<i>F</i> (000)	6604	7224	2702
$R_{\rm int}$	0.0679	0.0524	0.0464
GOF on F ²	1.046	1.037	1.033
Reflns collected	76685	86656	29093
R_1^{a} , $wR_2 [I \ge 2\sigma(I)]^{b}$	0.0617, 0.1533	0.0416, 0.1003	0.0624, 0.1716
R_1 , wR_2 (all data)	0.0916, 0.1762	0.0600, 0.1129	0.0949, 0.2005
CCDC number	1919733	1919735	1919734

 Table S1 Crystallographic data and structure refinement details for compounds 1-3.

Table S2 Selected bond lengths [Å] for compound 1.

Dy(1)-O(6) $2.171(6)$ $Dy(3)-O(2)$ $2.277(6)$ $Dy(1)-O(3)$ $2.334(6)$ $Dy(3)-O(21)$ $2.280(6)$ $Dy(1)-O(1)$ $2.350(6)$ $Dy(3)-O(4)$ $2.350(6)$ $Dy(1)-O(13)$ $2.438(7)$ $Dy(3)-O(24)$ $2.398(7)$ $Dy(1)-O(13)$ $2.438(7)$ $Dy(3)-O(17)$ $2.408(5)$ $Dy(1)-O(10)$ $2.482(6)$ $Dy(3)-O(17)$ $2.408(5)$ $Dy(1)-O(10)$ $2.524(6)$ $Dy(3)-O(14)$ $2.477(6)$ $Dy(1)-O(11)$ $2.5565(7)$ $Dy(3)-N(1)$ $2.488(7)$ $Dy(1)-N(6)$ $2.570(7)$ $Dy(3)-N(3)$ $2.546(7)$ $Dy(1)-Dy(2)$ $3.8311(6)$ $Dy(3)-Dy(4)$ $3.8193(6)$ $Dy(2)-O(11)$ $2.274(6)$ $Dy(4)-O(7)$ $2.181(7)$ $Dy(2)-O(17)$ $2.286(6)$ $Dy(4)-O(4)$ $2.336(6)$ $Dy(2)-O(3)$ $2.346(6)$ $Dy(4)-O(18)$ $2.376(6)$		lengens [11] for compound	u 1.	
Dy(1)-O(3) $2.334(6)$ $Dy(3)-O(21)$ $2.280(6)$ $Dy(1)-O(1)$ $2.350(6)$ $Dy(3)-O(4)$ $2.350(6)$ $Dy(1)-O(13)$ $2.438(7)$ $Dy(3)-O(24)$ $2.398(7)$ $Dy(1)-O(29)$ $2.480(6)$ $Dy(3)-O(17)$ $2.408(5)$ $Dy(1)-O(10)$ $2.482(6)$ $Dy(3)-N(13)$ $2.455(8)$ $Dy(1)-O(11)$ $2.524(6)$ $Dy(3)-O(14)$ $2.477(6)$ $Dy(1)-N(8)$ $2.565(7)$ $Dy(3)-N(1)$ $2.488(7)$ $Dy(1)-N(6)$ $2.570(7)$ $Dy(3)-N(3)$ $2.546(7)$ $Dy(1)-Dy(2)$ $3.8311(6)$ $Dy(3)-Dy(4)$ $3.8193(6)$ $Dy(2)-O(11)$ $2.274(6)$ $Dy(4)-O(7)$ $2.181(7)$ $Dy(2)-O(17)$ $2.286(6)$ $Dy(4)-O(25)$ $2.373(7)$ $Dy(2)-O(22)$ $2.402(6)$ $Dy(4)-O(18)$ $2.376(6)$	Dy(1)-O(6)	2.171(6)	Dy(3)-O(2)	2.277(6)
Dy(1)-O(1)2.350(6) $Dy(3)-O(4)$ 2.350(6) $Dy(1)-O(13)$ 2.438(7) $Dy(3)-O(24)$ 2.398(7) $Dy(1)-O(29)$ 2.480(6) $Dy(3)-O(17)$ 2.408(5) $Dy(1)-O(10)$ 2.482(6) $Dy(3)-N(13)$ 2.455(8) $Dy(1)-O(11)$ 2.524(6) $Dy(3)-O(14)$ 2.477(6) $Dy(1)-N(8)$ 2.565(7) $Dy(3)-N(1)$ 2.488(7) $Dy(1)-N(6)$ 2.570(7) $Dy(3)-N(3)$ 2.546(7) $Dy(1)-Dy(2)$ 3.8311(6) $Dy(3)-Dy(4)$ 3.8193(6) $Dy(2)-O(11)$ 2.274(6) $Dy(4)-O(7)$ 2.181(7) $Dy(2)-O(17)$ 2.286(6) $Dy(4)-O(25)$ 2.373(7) $Dy(2)-O(22)$ 2.402(6) $Dy(4)-O(18)$ 2.376(6)	Dy(1)-O(3)	2.334(6)	Dy(3)-O(21)	2.280(6)
Dy(1)-O(13) $2.438(7)$ $Dy(3)-O(24)$ $2.398(7)$ $Dy(1)-O(29)$ $2.480(6)$ $Dy(3)-O(17)$ $2.408(5)$ $Dy(1)-O(10)$ $2.482(6)$ $Dy(3)-N(13)$ $2.455(8)$ $Dy(1)-O(11)$ $2.524(6)$ $Dy(3)-O(14)$ $2.477(6)$ $Dy(1)-N(8)$ $2.565(7)$ $Dy(3)-N(1)$ $2.488(7)$ $Dy(1)-N(6)$ $2.570(7)$ $Dy(3)-N(3)$ $2.546(7)$ $Dy(1)-Dy(2)$ $3.8311(6)$ $Dy(3)-Dy(4)$ $3.8193(6)$ $Dy(2)-O(11)$ $2.274(6)$ $Dy(4)-O(7)$ $2.181(7)$ $Dy(2)-O(17)$ $2.386(6)$ $Dy(4)-O(25)$ $2.373(7)$ $Dy(2)-O(22)$ $2.402(6)$ $Dy(4)-O(18)$ $2.376(6)$	Dy(1)-O(1)	2.350(6)	Dy(3)-O(4)	2.350(6)
Dy(1)-O(29) $2.480(6)$ $Dy(3)-O(17)$ $2.408(5)$ $Dy(1)-O(10)$ $2.482(6)$ $Dy(3)-N(13)$ $2.455(8)$ $Dy(1)-O(11)$ $2.524(6)$ $Dy(3)-O(14)$ $2.477(6)$ $Dy(1)-N(8)$ $2.565(7)$ $Dy(3)-N(1)$ $2.488(7)$ $Dy(1)-N(6)$ $2.570(7)$ $Dy(3)-N(3)$ $2.546(7)$ $Dy(1)-Dy(2)$ $3.8311(6)$ $Dy(3)-Dy(4)$ $3.8193(6)$ $Dy(2)-O(11)$ $2.274(6)$ $Dy(4)-O(7)$ $2.181(7)$ $Dy(2)-O(17)$ $2.286(6)$ $Dy(4)-O(4)$ $2.336(6)$ $Dy(2)-O(3)$ $2.346(6)$ $Dy(4)-O(18)$ $2.376(6)$	Dy(1)-O(13)	2.438(7)	Dy(3)-O(24)	2.398(7)
Dy(1)-O(10) $2.482(6)$ $Dy(3)-N(13)$ $2.455(8)$ $Dy(1)-O(11)$ $2.524(6)$ $Dy(3)-O(14)$ $2.477(6)$ $Dy(1)-N(8)$ $2.565(7)$ $Dy(3)-N(1)$ $2.488(7)$ $Dy(1)-N(6)$ $2.570(7)$ $Dy(3)-N(3)$ $2.546(7)$ $Dy(1)-Dy(2)$ $3.8311(6)$ $Dy(3)-Dy(4)$ $3.8193(6)$ $Dy(2)-O(11)$ $2.274(6)$ $Dy(4)-O(7)$ $2.181(7)$ $Dy(2)-O(17)$ $2.286(6)$ $Dy(4)-O(4)$ $2.336(6)$ $Dy(2)-O(3)$ $2.346(6)$ $Dy(4)-O(18)$ $2.376(6)$	Dy(1)-O(29)	2.480(6)	Dy(3)-O(17)	2.408(5)
Dy(1)-O(11) $2.524(6)$ $Dy(3)-O(14)$ $2.477(6)$ $Dy(1)-N(8)$ $2.565(7)$ $Dy(3)-N(1)$ $2.488(7)$ $Dy(1)-N(6)$ $2.570(7)$ $Dy(3)-N(3)$ $2.546(7)$ $Dy(1)-Dy(2)$ $3.8311(6)$ $Dy(3)-Dy(4)$ $3.8193(6)$ $Dy(2)-O(11)$ $2.274(6)$ $Dy(4)-O(7)$ $2.181(7)$ $Dy(2)-O(17)$ $2.286(6)$ $Dy(4)-O(4)$ $2.336(6)$ $Dy(2)-O(3)$ $2.346(6)$ $Dy(4)-O(18)$ $2.376(6)$	Dy(1)-O(10)	2.482(6)	Dy(3)-N(13)	2.455(8)
Dy(1)-N(8) $2.565(7)$ $Dy(3)-N(1)$ $2.488(7)$ $Dy(1)-N(6)$ $2.570(7)$ $Dy(3)-N(3)$ $2.546(7)$ $Dy(1)-Dy(2)$ $3.8311(6)$ $Dy(3)-Dy(4)$ $3.8193(6)$ $Dy(2)-O(11)$ $2.274(6)$ $Dy(4)-O(7)$ $2.181(7)$ $Dy(2)-O(17)$ $2.286(6)$ $Dy(4)-O(4)$ $2.336(6)$ $Dy(2)-O(3)$ $2.346(6)$ $Dy(4)-O(25)$ $2.373(7)$ $Dy(2)-O(22)$ $2.402(6)$ $Dy(4)-O(18)$ $2.376(6)$	Dy(1)-O(11)	2.524(6)	Dy(3)-O(14)	2.477(6)
Dy(1)-N(6) $2.570(7)$ $Dy(3)-N(3)$ $2.546(7)$ $Dy(1)-Dy(2)$ $3.8311(6)$ $Dy(3)-Dy(4)$ $3.8193(6)$ $Dy(2)-O(11)$ $2.274(6)$ $Dy(4)-O(7)$ $2.181(7)$ $Dy(2)-O(17)$ $2.286(6)$ $Dy(4)-O(4)$ $2.336(6)$ $Dy(2)-O(3)$ $2.346(6)$ $Dy(4)-O(25)$ $2.373(7)$ $Dy(2)-O(22)$ $2.402(6)$ $Dy(4)-O(18)$ $2.376(6)$	Dy(1)-N(8)	2.565(7)	Dy(3)-N(1)	2.488(7)
Dy(1)-Dy(2) $3.8311(6)$ $Dy(3)-Dy(4)$ $3.8193(6)$ $Dy(2)-O(11)$ $2.274(6)$ $Dy(4)-O(7)$ $2.181(7)$ $Dy(2)-O(17)$ $2.286(6)$ $Dy(4)-O(4)$ $2.336(6)$ $Dy(2)-O(3)$ $2.346(6)$ $Dy(4)-O(25)$ $2.373(7)$ $Dy(2)-O(22)$ $2.402(6)$ $Dy(4)-O(18)$ $2.376(6)$	Dy(1)-N(6)	2.570(7)	Dy(3)-N(3)	2.546(7)
Dy(2)-O(11)2.274(6)Dy(4)-O(7)2.181(7)Dy(2)-O(17)2.286(6)Dy(4)-O(4)2.336(6)Dy(2)-O(3)2.346(6)Dy(4)-O(25)2.373(7)Dy(2)-O(22)2.402(6)Dy(4)-O(18)2.376(6)	Dy(1)-Dy(2)	3.8311(6)	Dy(3)-Dy(4)	3.8193(6)
Dy(2)-O(17)2.286(6)Dy(4)-O(4)2.336(6)Dy(2)-O(3)2.346(6)Dy(4)-O(25)2.373(7)Dy(2)-O(22)2.402(6)Dy(4)-O(18)2.376(6)	Dy(2)-O(11)	2.274(6)	Dy(4)-O(7)	2.181(7)
Dy(2)-O(3)2.346(6)Dy(4)-O(25)2.373(7)Dy(2)-O(22)2.402(6)Dy(4)-O(18)2.376(6)	Dy(2)-O(17)	2.286(6)	Dy(4)-O(4)	2.336(6)
Dy(2)-O(22) 2.402(6) Dy(4)-O(18) 2.376(6)	Dy(2)-O(3)	2.346(6)	Dy(4)-O(25)	2.373(7)
	Dy(2)-O(22)	2.402(6)	Dy(4)-O(18)	2.376(6)

Dy(2)-N(18)	2.441(7)	Dy(4)-O(16)	2.406(7)	
Dy(2)-O(2)	2.442(6)	Dy(4)-O(15)	2.476(7)	
Dy(2)-O(12)	2.463(6)	Dy(4)-O(21)	2.502(7)	
Dy(2)-N(5)	2.498(7)	Dy(4)-N(9)	2.553(8)	
Dy(2)-N(4)	2.513(7)	Dy(4)-N(2)	2.608(7)	
Dy(2)-Dy(3)	3.8964(6)			

 Table S3 Selected bond lengths [Å] for complound 2.

Dy(1)-O(22)	2.189(4)	Dy(4)-O(2)	2.249(4)
Dy(1)-O(4)	2.299(4)	Dy(4)-O(1)	2.291(4)
Dy(1)-O(11)	2.321(4)	Dy(4)-O(33)	2.333(4)
Dy(1)-O(12)	2.350(4)	Dy(4)-O(18)	2.385(4)
Dy(1)-O(26)	2.397(4)	Dy(4)-O(8)	2.391(4)
Dy(1)-O(32)	2.412(4)	Dy(4)-O(19)	2.452(4)
Dy(1)-N(5)	2.464(6)	Dy(4)-N(4)	2.463(5)
Dy(1)-O(13)	2.550(4)	Dy(4)-N(14)	2.511(5)
Dy(1)-Dy(2)	3.8035(4)	Dy(4)-N(2)	2.536(5)
Dy(2)-O(20)	2.289(4)	Dy(4)-Dy(5)	3.8257(4)
Dy(2)-O(9)	2.307(4)	Dy(5)-O(23)	2.269(4)
Dy(2)-O(4)	2.319(4)	Dy(5)-O(8)	2.297(4)
Dy(2)-O(5)	2.365(4)	Dy(5)-O(6)	2.300(4)
Dy(2)-O(12)	2.429(4)	Dy(5)-O(7)	2.436(4)
Dy(2)-O(15)	2.518(4)	Dy(5)-O(16)	2.441(4)
Dy(2)-N(8)	2.527(5)	Dy(5)-N(7)	2.514(5)
Dy(2)-N(3)	2.592(5)	Dy(5)-O(2)	2.516(4)
Dy(2)-O(31)	2.607(4)	Dy(5)-O(3)	2.529(4)
Dy(2)-Dy(3)	3.8195(4)	Dy(5)-N(13)	2.571(5)
Dy(3)-O(15)	2.253(4)	Dy(5)-Dy(6)	3.9414(4)
Dy(3)-O(18)	2.286(4)	Dy(6)-O(27)	2.233(5)
Dy(3)-O(9)	2.335(4)	Dy(6)-O(25)	2.267(5)
Dy(3)-O(1)	2.379(4)	Dy(6)-O(21)	2.327(5)
Dy(3)-O(17)	2.421(4)	Dy(6)-O(6)	2.387(4)
Dy(3)-O(30)	2.457(4)	Dy(6)-O(7)	2.429(4)
Dy(3)-N(18)	2.465(5)	Dy(6)-O(24)	2.443(5)
Dy(3)-N(12)	2.524(5)	Dy(6)-N(15)	2.474(6)
Dy(3)-N(1)	2.530(5)	Dy(6)-O(10)	2.595(5)
Dy(3)-Dy(4)	3.7969(4)		

Table S4 Selected bond lengths [Å] for compound 3.

Dy(1)-O(21)	2.146(8)	Dy(4)-O(13)#1	2.492(8)
Dy(1)-O(14)	2.286(8)	Dy(4)-N(2)	2.563(10)
Dy(1)-O(16)#1	2.374(8)	Dy(4)-N(10)#1	2.630(11)
Dy(1)-O(29)	2.387(14)	Dy(4)-Dy(3)#1	3.6604(8)
Dy(1)-O(25)	2.466(12)	Dy(4)-Dy(5)#1	3.6802(8)

Dy(1)-N(14)	2.475(12)	Dy(5)-O(17)	2.260(8)
Dy(1)-O(18)#1	2.478(9)	Dy(5)-O(6)	2.283(8)
Dy(1)-O(23)	2.491(11)	Dy(5)-O(7)	2.309(8)
Dy(1)-N(13)	2.881(14)	Dy(5)-O(20)	2.403(10)
Dy(1)-Dy(2)#1	3.8134(9)	Dy(5)-O(9)	2.413(12)
Dy(2)-O(1)	2.320(7)	Dy(5)-O(8)#1	2.501(8)
Dy(2)-O(14)#1	2.357(8)	Dy(5)-O(4)	2.520(8)
Dy(2)-O(16)	2.362(8)	Dy(5)-N(4)	2.583(11)
Dy(2)-O(15)#1	2.379(8)	Dy(5)-O(11)#1	2.595(9)
Dy(2)-O(12)	2.389(9)	Dy(5)-Dy(4)#1	3.6801(8)
Dy(2)-O(5)	2.399(9)	Dy(5)-Na(1)	3.844(6)
Dy(2)-O(3)#1	2.476(8)	N(3)-Dy(2)#1	2.559(9)
Dy(2)-N(6)	2.505(11)	N(8)-Dy(3)#1	2.530(9)
Dy(2)-N(3)#1	2.559(9)	N(10)-Dy(4)#1	2.630(11)
Dy(2)-N(17)#1	2.806(12)	N(17)-Dy(2)#1	2.806(12)
Dy(2)-Dy(1)#1	3.8134(8)	N(17)-Na(1)	2.861(14)
Dy(2)-Dy(3)#1	3.9432(8)	Na(1)-O(41)	2.23(3)
Dy(3)-O(4)	2.262(8)	Na(1)-O(7)	2.311(10)
Dy(3)-O(3)	2.308(8)	Na(1)-O(24)	2.466(12)
Dy(3)-O(2)	2.338(8)	Na(1)-O(26)	2.565(16)
Dy(3)-O(13)#1	2.343(8)	Na(1)-O(17)	2.567(12)
Dy(3)-O(10)	2.356(8)	Na(1)-O(15)	2.726(11)
Dy(3)-O(1)#1	2.427(8)	O(1)-Dy(3)#1	2.427(7)
Dy(3)-N(8)#1	2.530(9)	O(3)-Dy(2)#1	2.476(8)
Dy(3)-N(1)	2.559(9)	O(4)-Dy(4)#1	2.441(8)
Dy(3)-Dy(4)#1	3.6604(8)	O(6)-Dy(4)#1	2.356(7)
Dy(3)-Dy(4)	3.8568(8)	O(8)-Dy(5)#1	2.501(8)
Dy(3)-Dy(2)#1	3.9432(8)	O(11)-Dy(5)#1	2.595(8)
Dy(4)-O(2)	2.329(8)	O(13)-Dy(3)#1	2.343(8)
Dy(4)-O(6)#1	2.356(7)	O(13)-Dy(4)#1	2.492(8)
Dy(4)-O(13)	2.371(8)	O(14)-Dy(2)#1	2.357(8)
Dy(4)-O(8)	2.395(8)	O(15)-Dy(2)#1	2.379(8)
Dy(4)-O(22)	2.423(9)	O(16)-Dy(1)#1	2.374(8)
Dy(4)-O(4)#1	2.441(8)	O(18)-Dy(1)#1	2.478(9)

Symmetry code: #1 -x+1, -y+1, -z+1

Table S5 Dy ^{III} geometry at	nalysis of compound	1 by <i>SHAPE</i> 2.1 ⁴	¹ software
--	---------------------	---	-----------------------

Table S5 Dy ^{III} geometry analysis of compound 1 by SHAPE 2.1 ⁴ software.						
Dy center	Spherical-relaxed capped cube (C_{4v})	Tricapped trigonal prism J51 (D _{3h})	Capped square antiprism J10 (C _{4v})	Spherical capped square antiprism (C_{4v})	Spherical tricapped trigonal prism (D _{3h})	
Dy1	8.197	2.593	1.386	0.754	1.178	
Dy2	7.308	3.107	1.749	0.672	1.328	
Dy3	7.465	3.194	1.656	0.646	1.411	

Dy4	8.169	2.659	1.369	0.807	1.194		
Table S	Table S6 Dy ^{III} geometry analysis of compound 2 by SHAPE 2.1 ⁴ software.						
Dy center	Square antiprism (D _{4d})	Triangular dodecahedron (D_{2d})	Biaugmented trigonal prism J50 (C _{2v})	Snub diphenoid J84 (D _{2d})	Johnson gyrobifastigium J26 (D _{2d})		
Dy1 Dy6	1.868 3 209	1.673 2.352	2.372 3.046	2.848 4 891	11.079 8 728		
Dy center	Spherical-relaxed capped cube (C_{4v})	Tricapped trigonal prism J51 (D _{3h})	Capped square antiprism J10 (C_{4v})	Spherical capped square antiprism (C_{4v})	Spherical tricapped trigonal prism (D_{3h})		
Dy2	7.255	2.715	2.540	1.341	1.751		
Dy3	8.539	3.080	1.523	0.524	1.386		
Dy4	8.981	2.941	1.291	0.392	1.466		

Table S7 Dy^{III} geometry analysis of compound 3 by SHAPE 2.1⁴ software.

Dy center	Square antiprism (D _{4d})	Triangular dodecahed ron (D_{2d})	Biaugmented trigonal prism (C_{2v})	Snub diphenoid J84 (D _{2d})	Johnson gyrobifastigium J26 (D _{2d})
Dy1	5.312	3.539	3.679	5.710	12.746
Dy3	1.505	2.001	1.858	4.588	14.372
	Spherical-relayed	Tricapped	Capped	Spherical	Spherical
Dy	canned cube	trigonal	square antiprism	capped square	tricapped
center	(C_{i})	prism J51	J10	antiprism	trigonal prism
	(C_{4v})	(D_{3h})	$(C_{4\mathrm{v}})$	$(C_{4\mathrm{v}})$	(D_{3h})
Dy2	7.076	3.568	3.005	1.936	2.729
Dy4	9.538	3.123	1.762	1.044	2.001
Dy5	9.687	2.442	1.229	0.698	1.672

References

- 1. G. A. Bain and J. F. Berry, J. Chem. Educ., 2008, 85, 532.
- 2. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112-122.
- 3. R. A. Coxall, S. G. Harris, D. K. Henderson, S. Parsons, P. A. Tasker and R. E. P. Winpenny, *J. Chem. Soc., Dalton Trans.*, 2000, 2349-2356.
- 4. D. Casanova, M. Llunell, P. Alemany and S. Alvarez, Chem. Eur. J., 2005, 11, 1479-1494.