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13C NMR spectrum of 3-[2', 5"-di(2-hexyldecyloxy)phenyl]phthalonitrile
(7) in CDCls. The peak marked with asterisk denotes residual solvent.
HR-APCI-TOF-Mass spectrum of 3-[(2', 5'-dimethoxy)phenyl]phthalonitrile
(8) in CDCls. Peaks marked with asterisk denote residual solvent.
'H NMR spectrum of 3-[(2’, 5'-dimethoxy)phenyl]phthalonitrile (8) in CDCls.
Peaks marked with asterisk denote residual solvent and internal standard.
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HR-APCI-TOF-Mass spectrum of 1.
'H NMR spectrum of 1 in CDCls. Peaks marked with asterisk denote residual
solvent and internal standard.
HR-APCI-TOF-Mass spectrum of 2.
'H NMR spectrum of 2 in CDCls. Peaks marked with asterisk denote residual
solvent and internal standard.
HR-APCI-TOF-Mass spectrum for 3.
'H NMR spectrum of 3 in CDCls. Peaks marked with asterisk denote residual
solvent and internal standard.
13C NMR spectrum of 3 in CDCls. Peaks marked with asterisk denote residual
solvent.
Possible four regioisomers obtained from cyclotetranerization of
3-substituted phthalonitrile.
Possible four conformational isomers of 2 originated from the different
orientations of 2-substituted alkoxy chains on the phenyl units.
Selected region of *H NMR spectra for 1 and 2 inCDCls. Insets mean side group
conformation relative to Pc core.
Thermogravimetric analysis curve for 1 and 2 (under N2 atmosphere,
scan rate 10 °C/min).
Polarizing optical microscopic images for 1 and 2 at room temperature.
Images a) and c) were taken under open polarizer. Images b) and d) were
taken under crossed polarizer.
DSC profiles for 1 at scan rate 10 °C/min under N flow.

DSC profiles for 2 at scan rate 10 °C/min under N flow.
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S30.  Liquid thin film sandwiched by two quartz plates for 1 (left) and 2 (right). S24
Small amount of the liquid sample was put on quartz plate by spatula, and
Then sandwiched by another quartz plate. The sandwiched sample was rubbing
With these quartz plates.
S31.  UV-vis absorption (solid line) and fluorescence (dashed line) spectra for 1 S24
in chloroform solution. € means molar extinction coefficient. Excitation
wavelength for fluorescence spectrum was 625 nm.
S32.  UV-vis absorption (solid line) and fluorescence (dashed line) spectra for 2 S24
in chloroform solution. £ means molar extinction coefficient. Excitation
wavelength for fluorescence spectrum was 625 nm.
S33.  UV-vis absorption (solid line) and fluorescence (dashed line) spectra for 3 S25
in chloroform solution. € means molar extinction coefficient. Excitation
wavelength for fluorescence spectrum was 625 nm.
S34.  Fluorescence spectra for 2 in solvent-free liquid state. S25
Liquid thin film sandwiched by two quartz plates was used for this measurement.
The liquid thin film was heated by hot stage (METTLER TOLEDO FP82HT) for
10 minutes, then the sample was quickly transferred from hot stage to spectrometer
and fluorescence of this sample was measured.
S35.  a-d) Comparison of the variation of absorption (a and b) and fluorescence S26
(c and d) spectra for 2 and 3 in chloroform under irradiating by simulated
sunlight. e and f) Time-dependent change of absorbance (e) or fluorescence
intensity (f) ratio at 707 nm. The slopes of least squares line mean photo-degradation

rate of the samples.
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Sl Polarity effect of solvents on wavelength of fluorescence. S25
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Experimental section

Materials and equipment

All commercial available chemicals were used without further purifications unless otherwise noted.
4A molecular sieves and potassium acetate (AcOK) were dried at 200 °C in vacuo in prior to use. 1-
Butanol and 1-dodecanol for synthesis of phthalocyanines were dried over 4A molecular sieves in
prior to use. 2-Dicyclohexylphosphino-2',6’-dimethoxybiphenyl (Sphos) and tetrakis(triphenylphos-
phine)palladium (0) (Pd(PPhs)s) were purchased from Sigma Aldrich. Palladium acetate (Pd(OAC)z),
dichlorobis-(triphenylphosphine)palladium (II) ( PdClx(PPhs), ), AcOK, tripotassium phosphate
(K3PQOy), potassium carbonate (K2CO3), Li metal, and all solvents were purchased from WAKO pure
chemical. Bis(pinacolato)diboron was purchased from Matrix Scientific. 2-Hexyldecylbromide and 2,
5-dimethoxyphenyl boronic acid were purchased from Tokyo Chemical Industry. *H and *C NMR
measurements were carried out by using a Bruker BioSpin AVANCE NEO 400 OneBay (400.13 and
100.61 MHz for 'H and 3C, respectively). Chemical shifts are reported relative to internal
tetramethylsillane (TMS). Chemical shifts are expressed in  (ppm) values, and coupling constants are
expressed in hertz (Hz). The following abbreviations are used: s = singlet, d = doublet, dd = double
doublet, t = triplet, quin = quintet, m = multiplet, brs = broad singlet, br = broad. High resolution
atmospheric pressure chemical ionization time-of-flight (HR-APCI-TOF)-Mass spectra were recorded
with Bruker micrOTOF-II. Fourier transfer infra-red (FT-IR) absorption spectra were recorded on
Shimazu IR Prestige-21 with Dura Sample IR II (Kyoto, Japan).UV-visible absorption spectra were
recorded with Shimazu UV-2600 for solution state spectra and JASCO V-650 for neat state spectra.
Fluorescence spectra were recorded with JASCO spectrofluorometer FP-8600. Excitation wavelength
was 625 nm for solution and thin film, respectively. Polarizing optical microscopic observation was
carried out with polarizing optical microscope (NIKON ECLIPSE LV100ND) equipped with a hot
stage (METTLER TOLEDO FP82HT Hot Stage). Recycling preparative HPLC was carried out with
LC-908W (Japan Analytical Industry). Thermogravimetric analyses (TGA) were carried out with
Seiko Instruments EXSTAR TG/DTA6200 under nitrogen gas flow at scan rate 10 °C/min.
Differential scanning calorimetry (DSC) was carried out with Hitachi High-tech Science DSC7020
with liquid nitrogen cooling under nitrogen gas flow. X-ray diffractogram was recorded with Rigaku
X-ray diffractometer RINT-Ultima / S2K (Cu K source). Column chromatography was carried out
on silica gel (Wako gel C-200). Thin layer chromatography (TLC) was carried out on commercial
Merck plates coated with silica gel 60F254. Photostability experiments were conducted with solar
simulator (100W m2, Xe lamp, AM 1.5G, SAN-EI ELECTRIC, XES-151S). Quartz cells were filled
with dilute chloroform solution of the samples (c=10-° M). The cells were stored under simulated
sunlight over 3 hours. Proceeding of photo-degradation was monitored by absorption and fluorescence

spectral change each 30 minutes.

S5



Synthesis
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Scheme S1. Sythetic route for di(2-hexyldecyloxy)benzene boronic acid pinacol
ester (4 and 6).

3, 5- Di(2-hexyldecyloxy)benzeneboronic acid pinacol ester (4 in Scheme S1)51

The title compound was prepared by palladium-catalyzed Miyaura-Ishiyama borylation.[52 A flask
containing 3, 5-di(2-hexyldecyloxy)bromobenzenelst (612 mg, 0.960 mmol), AcOK (280 mg, 2.85
mmol, 3eq.), bis(pinacolato)diboron (Bzpinz) (366 mg, 1.43 mmol, 1.5eq.) and PdCI(PPhs), (73 mg,
0.095 mmol, 0.1eq.) was filled with Ar. Deoxygenaized dioxane (3.2 mL) was added to the mixture
with syringe through septum. The mixture was heated at 80 °C for 72 hs. After cooling to r.t, the
reaction mixture was diluted with n-hexane. This mixture was filtrated to remove insoluble chemicals.
The filtrate was washed with water and brine. The organic layer was dried over Na SO.. After filtration,
the solvent was evaporated in vacuo. The crude product was purified with recycling preparative HPLC
(CHCIs) to obtain colorless oil. Yield: 67% *H NMR (400.13 MHz, CDCls) §(ppm): 6.92(d, J=2.4Hz,
Ha, 2H), 6.56(t, J=2.2Hz, Hy, 1H), 3.84(d, J=5.6Hz, -OCH2-(Hc), 4H), 1.74(brs, -OCCH-(Hg), 2H),
1.43-1.27(m, -(CH2)12- and -CHs of pinacol unit, 60H), 0.90-0.86(m, -CHs(Hs), 12H). 3C NMR
(100.16MHz, CDCls) d(ppm):160.65, 112.63, 105.35, 84.15, 71.07, 38.54, 32.35, 32.32, 32.30, 31.88,
30.47, 30.14, 30.04, 29.77, 27.31, 25.25, 23.11, 14.52. HR-APCI-TOF-Mass (positive) found m/z:
683.6046, calcd. for CasHs104B m/z: 683.6259 [M]*.
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Fig. S1 HR-APCI-TOF-Mass spectrum of 3, 5-di(2-hexyldecyloxy)benzeneboronic

acid pinacol ester (4).
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Fig. S2 'H NMR spectrum of 3, 5-di(2-hexyldecyloxy)benzeneboronic acid pinacol ester (4)
in CDCls. Peaks marked with asterisk denote residual solvent and internal standard.
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Fig. S3 13C NMR spectrum of 3, 5-di(2-hexyldecyloxy)benzeneboronic acid pinacol ester (4)
in CDCls. The peak marked with asterisk denotes residual solvent.
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2, 5- Di(2-hexyldecyloxy)benzeneboronic acid pinacol ester (6 in Scheme S1)51

The synthetic method was the same for that of 4. 2, 5-di(2-hexyldecyloxy)bromobenzene S was used
as the starting material instead of 3, 5-di(2-hexyldecyloxy)bromobenzene. The target compound was
obtained as colorless oil. Yield: 51% *H NMR (400.13 MHz, CDCls) §(ppm): 7.18(d, J=3.2Hz, H,
1H), 6.89(dd, J=3.2, 5.6Hz, Hp, 1H), 6.75(d, J=9.2Hz, Hc, 1H), 3.78(d, J=5.2Hz, -OCH,-(Hd), 4H),
1.78-1.56(m, -OCCH-(He), 2H), 1.54-1.32(m, -(CH2)12- and -CH3 of pinacol unit, 60H), 0.89-0.86(m,
-CHs(Hg), 12H). 13C NMR (100.16MHz, CDCls) d(ppm):158.61, 153.34, 122.33, 118.68, 115.78,
113.18, 83.70, 72.18, 71.81, 38.77, 38.60, 32.35, 32.33, 32.30, 31.83, 31.58, 30.59, 30.13, 30.09,
30.02, 29.79, 29.76, 27.36, 27.32, 27.29, 25.31, 23.09, 14.52. HR-APCI-TOF-Mass (positive) found
m/z: 683.6341, calcd. for C4sHg104B m/z: 683.6259 [M]*.
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Fig. S4 HR-APCI-TOF-Mass spectrum of 2, 5-di(2-hexyldecyloxy)benzeneboronic

acid pinacol ester (6).
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Fig. S5 *H NMR spectrum of 2, 5-di(2-hexyldecyloxy)benzeneboronic acid pinacol ester (6)
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in CDCls. Peaks marked with asterisk denote residual solvent and internal standard.
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Fig. S6 13C NMR spectrum of 2, 5-di(2-hexyldecyloxy)benzeneboronic acid pinacol ester (6)

in CDCls. The peak marked with asterisk denotes residual solvent.
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Scheme S2. Synthetic route for 3-di(2-hexyldecyloxyphenyl)phthalonitriles (5 and 7).

3-[3", 5’-Di(2-hexyldecyloxy)phenyl)phthalonitrile (5 in Scheme S2)

The title compound was prepared by palladium-catalyzed Suzuki-Miyaura coupling in using SPhos as
a ligand.[s31 The reaction condition was followed to previous report.5*1 A flask containing 3-
iodophthalonitrilel® (118 mg, 0.454 mmol, 1.3eq.), 3, 5- Di(2-hexyldecyloxy)benzeneboronic acid
pinacol ester (4) (245 mg, 0.358 mmol), KsPO4 (310 mg, 1.40 mmol, 4eq.), Pd(OAc): (14 mg, 0.035
mmol, 0.1eq.) and SPhos (29mg, 0.070 mmol, 0.2eq.) was filled with Ar. 6.9 mL of deoxygenaized
mixed solvent (toluene / 1,2-dimethoxyehane (DME) / H;0, 1:1:2, v/v/v) was added to the mixture
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with syringe through septum. The mixture was refluxed for 72 hs. The reaction mixture was cooled to
r.t, and extracted with ethyl acetate. The organic layer was washed with water and brine. The organic
layer was dried over NaSOas. After filtration, the solvent was evaporated in vacuo. The crude product
was purified with silica gel column chromatography (R = 0.33, AcOEt : n-hexane = 1 :15, v/v) and
recycling preparative HPLC (CHClIs) to obtain as colorless oil. Yield: 65% *H NMR (400.13 MHz,
CDCls) d(ppm): 7.82-7.73(M, Hane, 3H), 6.65-6.59(m, Hge, 3H), 3.89(d, J=7.2Hz, -OCH,-(Hs), 4H),
1.81-1.78(m, -OCCH-(Hs), 2H), 1.49-1.30(m, -(CH2)12-, 48H), 0.92-0.88(m, -CHa(Hs), 12H). 1°C
NMR (100.16MHz, CDCls) o(ppm):160.86, 147.54, 137.98, 134.04, 132.68, 132.01, 117.27, 115.71,
115.15, 114.50, 107.24, 102.54, 71.23, 37.97, 31.91, 31.86, 31.37, 30.01, 29.68, 29.58, 29.33, 26.85,
26.83, 22.68, 14.11. HR-APCI-TOF-Mass (negative) found m/z: 684.5661, calcd. for CasH72N2O, m/z:
684.5588 [M] . FT-IR (ATR) v/ cm't: 2233.57 (-CN)
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Fig. S7 HR-APCI-TOF-Mass spectrum of 3-[3’, 5'-di(2-hexyldecyloxy)phenyl]phthalonitrile (5).
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Fig. S8 'H NMR spectrum of 3-[3’, 5'-di(2-hexyldecyloxy)phenyl]phthalonitrile (5) in CDCls.
Peaks marked with asterisk denotes residual solvent and internal standard.
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Fig. S9 3C NMR spectrum of 3-[3’, 5'-di(2-hexyldecyloxy)phenyl]phthalonitrile (5) in CDCls.

The peak marked with asterisk denotes residual solvent.
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3-[2', 5'-Di(2-hexyldecyloxy)phenyl]phthalonitrile (7 in Scheme S2)

The synthetic method and purifications were the same for that of 5. 2, 5-Di(2-
hexyldecyloxy)benzeneboronic acid pinacol etster (6) was used as the starting material instead of 3, 5-
di(2’-hexyldecyloxy)benzeneboronic acid pinacol ester. The target compound was obtained as
colorless oil. Yield: 45% TLC (silica gel): Rf=0.55 (AcOEt : n-hexane = 1:30, v/v) *H NMR (400.13
MHz, CDCls3) d(ppm): 7.76-7.67(m, Hane, 3H), 6.97-6.91(m, ArH, 2H), 6.82(d, J=2.8Hz, ArH, 1H),
3.80-3.79(m, -OCHa-(Hq), 4H), 1.77-1.73(m, -OCCH-(He), 1H), 1.62(brs, -OCCH-(Hs), 1H), 1.46-
1.18(m,-(CH2)12-, 48H), 0.90-0.85(m, -CHs(Hg), 12H). *C NMR (100.16MHz, CDCls)
d(ppm):153.67, 150.35, 145.12, 135.62, 132.45, 132.06, 126.64, 117.18, 117.11, 116.70, 116.16,
115.49, 113.86, 72.18, 38.47, 38.32, 32.31, 32.26, 32.21, 31.86, 31.77, 30.43, 30.39, 30.10, 30.04,
29.97, 29.73, 27.23, 27.15, 23.08, 14.51. HR-APCI-TOF-Mass (negative) found m/z: 684.5552, calcd.
for CasH72N202 m/z: 684.5588 [M] . FT-IR (ATR) v/ cm't: 2233.55 (-CN)
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Fig. S10 HR-APCI-TOF-Mass spectrum of 3-[2', 5'-di(2-hexyldecyloxy)
phenyl]phthalonitrile (7).
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Fig. S11 'H NMR spectrum of 3-[2’, 5’-di(2-hexyldecyloxy)phenyl]phthalonitrile (7) in CDCls.
Peaks marked with asterisk denote residual solvent and internal standard.
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Fig. S12 13C NMR spectrum of 3-[2’, 5’-di(2-hexyldecyloxy)phenyl]phthalonitrile (7) in CDCls.
The peak marked with asterisk denotes residual solvent.
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Scheme S3. Synthetic route for 3-(2', 5'-dimethoxyphenyl)phthalinitrile (8).

3-(2', 5'-Dimethoxyphenyl)phthalonitrile (8 in Scheme S3)

A flask containing 3-iodophthalonitrilel® (401 mg, 1.58 mmol), 2, 5-dimethoxyphenylboronic acid

(373 mg, 2.05 mmol), K2COs3 (468 mg, 3.39 mmol) and Pd(PPhs)s (181 mg, 0.156 mmol) was filled

with Ar. Degassed mixed solvent (5.6 ml, toluene/THF/H20 (3:1:1.6 v/v/v)) was added to the mixture.
The mixture was refluxed for 36 hs under Ar atmosphere. The reaction mixture was cooled to room
temperature, and extracted with ethyl acetate. The organic layer was washed with water and brine, and
dried over Na;SOa. After filtration, the solvent was evaporated in vacuo. The crude product was
purified with column chromatography (SiO., eluent: CH2Cl,: AcOEt = 20:1) and recycling preparative

HPLC (CHCIs) to obtain a white solid (62%). *H NMR (400.13 MHz, CDCls); 6 (ppm): 7.77-7.69 (m,

ArH, 3H), 6.97 (m, ArH, 2H), 6.81-6.80 (m, ArH, 1H), 3.78 (s, -OCHs, 3H), 3.77 (s, -OCHs, 3H). 1°C

NMR (100.16MHz, CDCls); 6 (ppm): 154.03, 150.80, 144.58, 135.66, 133.24, 132.34, 126.44, 116.86,
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116.83, 116.71, 116.43, 116.39, 115.78, 113.04, 56.35, 56.28. FT-IR (ATR); v (cm): 2233.57 (-CN).
HR-APCI-TOF-Mass; found m/z: 264.0880, calcd. for C16H1202N2 m/z: 264.0893 [M].
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Fig. S13 HR-APCI-Mass spectrum of 3-(2’, 5’-dimethoxy
phenyl)phthalonitrile (8).
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Fig. S14 *H NMR spectrum of 3-[2, 5’-di(2-hexyldecyloxy)phenyl]phthalonitrile (8) in
CDCls. Peaks marked with asterisk denote residual solvent and internal standard.
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Fig. S15 13C NMR spectrum of 3-(2’, 5’-dimethoxyphenyl)phthalonitrile (8) in CDCls.

The peak marked with asterisk denotes residual solvent.

OR

Ph= } 1

OR
-
N N OR Qf @
5 2
RO 1 -dodecanol
(O~ 7
R—
NC CN OR

7

Scheme S4. Synthetic route for Pcl1 and Pc2.

1, 8, 15, 22-Tetra[3’, 5'-di(2-hexyldecyloxyphenyl)]phthalocyanine (1 in Scheme S4)

The title compound was prepared by Linstead’s method.!¢1 Li metal (27 mg, 3.9 mmol) was dissolved
in dry 1-dodecanol (3.5 mL) at 100 °C under Ar. After Li was perfectly dissolved, the mixture was
cooled to r.t. To this mixture 3-[3’, 5'-di(2-hexyldecyloxyphenyl)]phthalonitrile (5) (239mg, 0.349
mmol) was added. The mixture was heated at 200 °C for 10hs under Ar. After cooling tor.t, the reaction
mixture was diluted with methanol. The precipitate was collected with filtration and residue was
washed with methanol several times. The crude product was purified with column chromatography
(Al,O3 / CH:Cl,, Rs=1.0). Further purification was carried out with recycling preparative HPLC
(CHCIs). The title Pc derivative was obtained as dark green viscous oil. Yield: 29% *H NMR (400.13
MHz, CDClIs) é(ppm): 8.87 (dd, J=2.0, 3.2Hz, H,, 4H), 8.10-8.07(m, Hyc, 8H), 7.41(d, J=2.0Hz, Hg,
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8H), 6.97(t, J=2.2Hz, He, 4H), 3.99(d, J=5.6Hz, -OCH2-(Hs), 16H), 1.81(quin, J=6.0Hz, -OCCH-(Hy),
8H), 1.46-0.61(m, aliphatic -CH2-, 240H), -0.23(s, -NH(Hs), 2H). HR-APCI-Mass (negative) found
m/z: 2740.2675, calcd.for CigsH200NsOs m/z: 2740.2526 [M]. UV-vis (in CHCI3) : Amax(loge) =
715(4.99), 681 (4.96), 653 (4.55), 619(4.38), 341(4.79). Fluorescence (in CHCI3, ex = 625 nm): ArL
=718 nm.
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Fig. S16 HR-APCI-TOF-Mass spectrum of 1.
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Fig. S17 *H NMR spectrum of 1 in CDCls. Peaks marked with asterisk denote residual solvent and

internal standard.

1, 8, 15, 22-Tetra[2', 5'-di(2-hexyldecyloxyphenyl)]phthalocyanine (2 in Scheme S4)

The synthetic method and purifications were the same for that of 1. 3-[2', 5'-Di(2-
hexyldecyloxyphenyl)]phthalonitrile (7) was used as the starting material instead of 5. The title Pc
derivative was obtained as dark green oil. Yield: 6% *H NMR (400.13 MHz, CDCls) 5(ppm): 8.72(br,
Ha, 4H), 8.04(br, Hye, 8H), 7.58-7.29(m, Heer, 12H), 3.99-3.59(m, -OCH>-(Hng), 16H), 1.83(br, exo-
OCCH-(H;), 4H), 1.48-0.15(m, aliphatic -CH,-, 244H), -0.51(s, -NH(H;), 2H). HR-APCI-Mass
(negative) found m/z: 2740.2132, calcd.for CigaH200NsOs m/z: 2740.2526 [M] . UV-vis (in CHCIs) :
Amax(loge) = 707(5.05), 673 (5.00), 646(4.54), 611(4.37), 346(4.75). Fluorescence (in CHCI3 hex =625

nm): XFL =709 nm.
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Fig. S19 *H NMR spectrum of 2 in CDCls. Peaks marked with asterisk denote residual solvents

and internal standard.
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Scheme S5. Synthetic route for Pc3.

1, 8, 15, 22-Tetra(2’, 5'-dimethoxyphenyl)phthalocyanine (3 in Scheme S5)

Li metal (13 mg, 1.9 mmol) was dissolved in dry 1-butanol (3.8 mL) at 70 °C under Ar. The mixture
was cooled to room temperature, and 3-(2', 5’-dimethoxyphenyl)phthalonitrile (8) (100 mg, 0.378
mmol) was added to this mixture. The mixture was refluxed for 4 hs under Ar. After cooling to room
temperature, the reaction was quenched with acetic acid and methanol. The precipitate was collected
with filtration, and washed with methanol for several times. The crude product was purified with the
recrystallization (CH2Cl, / acetone) to isolate Can-regioisomer, and the precipitated solid was collected
with filtration. Yield:13% *H NMR (400.13 MHz, CDCls); 6 (ppm): 8.70 (d, J=7.2Hz, Ha, 4H), 8.11
(t, J=7.4Hz, Hy, 4H), 8.05 (d, J=7.2Hz, H, 4H), 7.48-7.33 (M, Haer, 12H), 3.96 (s, -OCH3(Hg), 12H),
3.48 (brs, -OCHs(Hn), 12H), -0.49 (s, -NH(Hi), 2H). 13C NMR (100.16MHz, CDCls); 5(ppm): 154.32,
153.16, 136.33, 131.26, 129.86, 123.06, 114.39, 56.58, 56.46. HR-APCI-TOF-Mass; found m/z:
1058.3760, calcd. for CesHsoNgOg m/z: 1058.3746 [M]. UV-Vis (in CHCIs): Amax (nm) (loge) = 707
(5.09), 672 (5.06), 643 (4.60), 610 (4.44), 346 (4.81). Fluorescence (in CHCl3 Aex =625 nm): Ae. =709

nm.
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Fig. S20 HR-APCI-TOF Mass spectra for 3.
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Fig. S21 *H NMR spectrum for 3 in CDCls. Peaks marked with asterisk denote residual solvent and
internal standard.
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Fig. S22 13C NMR spectrum for 3 in CDCls. The peak marked with asterisk denotes residual solvent.
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Fig. S23 Possible four regioisomers obtained from

cyclotetramerization of 3-substituted phthalonitrile.
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Fig. S24 Possible four conformational isomers of 2 originated from the different orientations of 2-
substituted alkoxy chains on the phenyl units. Arrows denote orientations of four alkoxy chains
substituted at 2-position on phenyl units relative to phthalocyanine surface (blue: up, red: down). In
contrast to the well-resolved and clear *H NMR spectrum of 1 (Figure S14), 2 with four asymmetric
2, 5-alkoxy chains substituted phenyl units showed broad signals in *H NMR spectrum (Figure S16,
S19), which were probably due to coexistence of several conformational isomers. These isomer

mixtures originated from the rotation barrier of single bond between phthalocyanine core and the

phenyl unit with steric 2-substitution(s1,
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Fig. S25 Selected region of *H NMR spectra for 1 (lower)
and 2 (upper) in CDCls. Insets mean Side group conformation
relative to Pc core.
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Fig. S26 Thermogravimetric analysis curve for 1 and 2

(under N2 atmosphere, scan rate 10 °C/ min).
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Fig. S27 Polarizing optical microscopic images for 1 and

2 at room temperature. Images a) and c) were taken under

open polarizer. Images b) and d) were taken under crossed
polarizer.
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Fig. S28 DSC profiles for 1 at scan rate 10 °C/ min under N> flow.
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Fig. S29 DSC profiles for 2 at scan rate 10 °C/min under N> flow.
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Fig. S30 Liquid thin film sandwiched by two quartz plates for 1 (left) and 2 (right).
Small amount of the liquid sample was put on quartz plate by spatula, and then
sandwiched by another quartz plate. The sandwiched sample was rubbing with

these quartz plates.
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Fig. S31 UV-vis absorption (solid line) and fluorescence (dashed line) spectra
for 1 in chloroform solution. € means molar extinction coefficient. Excitation

wavelength for fluorescence spectrum was 625 nm.
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Fig. S32 UV-vis absorption (solid line) and fluorescence (dashed line) spectra

for 2 in chloroform solution. € means molar extinction coefficient. Excitation

wavelength for fluorescence spectrum was 625 nm.
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Fig. S33 UV-vis absorption (solid line) and fluorescence (dashed line)
spectra for 3 in chloroform solution. € means molar extinction coefficient.

Excitation wavelength for fluorescence spectrum was 625 nm.

Table S1. Polarity effect of solvents on wavelength of fluorescence.

el /nm
Sample n-hexane? toluene® CHCIs® THF
1 714 718 718 717
2 706 709 709 708
3 n.d.e 709 709 707

2£=1.90. ? £=2.38. ¢ £=4.70. 9 £=18.5. ¢ The datum was not obtained due to the insolubility.

& means dielectric constant of solvent.

The relative fluorescence quantum vyields for 1, 2, and 3 were obtained from following equation S1.
B-Tetra-tert-butylphthalocyanine was used as a standard sample (®s=0.67 in toluene)s’. All

fluorescence spectra were recorded in toluene. The samples were excited at 625 nm.

FA \ /A )
® = g, (Kst> (%) (Equation S1)

Where & and & are fluorescence quantum yield for unknown sample and standard sample (5-Tetra-
tert-butylphthalocyanine), respectively, FA and FAg are integrated area of fluorescence spectra for
unknown sample and standard sample, respectively, A and A are absorbance at excitation wavelength

(625 nm) for unknown sample and standard sample, respectively.
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Fig. S34 Fluorescence spectra for heating liquid film of 2. Liquid film sandwiched

by two quartz plates was used for this measurement. The liquid film was heated

by hot stage (METTLER TOLEDO FP82HT) for 10 minutes, then the sample was

quickly transferred from hot stage to spectrometer and fluorescence of the sample

was measured.
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Fig. S35 Comparison of the variation of absorption (a and b) and fluorescence (c and d) spectra for
2 and 3 in chloroform under irradiating by simulated sunlight. Time-dependent change of
absorbance (e) or fluorescence intensity (f) ratio at 707 nm. The slopes of least squares line mean

photo-degradation rate of the samples.
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