Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting information

A near-infrared fluorescent phthalocyanine liquid developed through controlling intermolecular interactions

Yoshiaki Chino^a, Takashi Nakanishi^b and Mutsumi Kimura^{a*}

^{a.} Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan.

^{b.} Frontier Molecules Group, International Center for Materials Nanoarchitectonics (WPI-MANA),

National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

	Contents List	
Scheme	Caption	Page
S1.	Synthetic route for di(2-hexyldecyloxy)benzene boronic acid pinacol ester	S6
	(4 and 6).	
S2.	Synthetic route for 3-di(2-hexyldecyloxyphenyl)phthalonitriles (5 and 7).	S9
S3.	Synthetic route for 3-(2', 5'-dimethoxyphenyl)phthalonitrile (8).	S 13
S4.	Synthetic route for Pc1 and Pc2.	S15
S5.	Synthetic route for Pc3 .	S19
Fig.	Caption	Page
S1.	HR-APCI-TOF-Mass spectrum of 3, 5-di(2-hexyldecyloxy)benzene boronic	S 6
	acid pinacol ester (4).	
S2.	¹ H NMR spectrum of 3, 5-di(2-hexyldecyloxy)benzene boronic acid pinacol	S 7
	ester (4) in CDCl ₃ . Peaks marked with asterisk denote residual solvent and	
	internal standard.	
S3.	¹³ C NMR spectrum of 3, 5-di(2-hexyldecyloxy)benzene boronic acid pinacol	S 7
	ester (4) in CDCl ₃ . The peak marked with asterisk denotes residual solvent.	
S4.	HR-APCI-TOF-Mass spectrum of 2, 5-di(2-hexyldecyloxy)benzene boronic	S 8
	acid pinacol ester (6).	
S5.	¹ H NMR spectrum of 2, 5-di(2-hexyldecyloxy)benzene boronic acid pinacol	S 8
	ester (6) in $CDCl_3$. Peaks marked with asterisk denote residual solvent and	
	internal standard.	
S6.	¹³ C NMR spectrum of 2, 5-di(2-hexyldecyloxy)benzene boronic acid pinacol	S 9
	ester (6) in $CDCl_3$. The peak marked with asterisk denotes residual solvent.	
S7.	HR-APCI-TOF-Mass spectrum of 3-[3', 5'-di(2-hexyldecyloxy)phenyl]	S10
	phthalonitrile (5).	
S8 .	¹ H NMR spectrum of 3-[3', 5'-di(2-hexyldecyloxy)phenyl]phthalonitrile	S 11
	(5) in CDCl ₃ . Peaks marked with asterisk denote residual solvent and	
	internal standard.	
S9.	¹³ C NMR spectrum of 3-[3', 5'-di(2-hexyldecyloxy)phenyl]phthalonitrile	S11
	(5) in CDCl ₃ . The peak marked with asterisk denotes residual solvent.	
S10.	HR-APCI-TOF-Mass spectrum of 3-[2', 5'-di(2-hexyldecyloxy)phenyl]	S12
	phthalonitrile (7).	
S11.	¹ H NMR spectrum of 3-[2', 5'-di(2-hexyldecyloxy)phenyl]phthalonitrile	S12
	(7) in CDCl ₃ . Peaks marked with asterisk denote residual solvent and	
	internal standard.	

Contents List			
Fig.	Caption	Page	
S12.	¹³ C NMR spectrum of 3-[2', 5'-di(2-hexyldecyloxy)phenyl]phthalonitrile	S13	
	(7) in CDCl ₃ . The peak marked with asterisk denotes residual solvent.		
S13.	HR-APCI-TOF-Mass spectrum of 3-[(2', 5'-dimethoxy)phenyl]phthalonitrile	S14	
	(8) in CDCl ₃ . Peaks marked with asterisk denote residual solvent.		
S14 .	¹ H NMR spectrum of 3-[(2', 5'-dimethoxy)phenyl]phthalonitrile (8) in CDCl ₃ .	S 14	
	Peaks marked with asterisk denote residual solvent and internal standard.		
S15.	13 C NMR spectrum of 3-[(2', 5'-dimethoxy)phenyl]phthalonitrile (8) in CDCl ₃ .	S15	
	Peaks marked with asterisk denote residual solvent.		
S16 .	HR-APCI-TOF-Mass spectrum of 1.	S16	
S17.	¹ H NMR spectrum of 1 in CDCl ₃ . Peaks marked with asterisk denote residual	S17	
	solvent and internal standard.		
S18.	HR-APCI-TOF-Mass spectrum of 2 .	S18	
S19.	¹ H NMR spectrum of 2 in CDCl ₃ . Peaks marked with asterisk denote residual	S 18	
	solvent and internal standard.		
S20.	HR-APCI-TOF-Mass spectrum for 3 .	S 19	
S21.	¹ H NMR spectrum of 3 in CDCl ₃ . Peaks marked with asterisk denote residual	S20	
	solvent and internal standard.		
S22.	¹³ C NMR spectrum of 3 in CDCl ₃ . Peaks marked with asterisk denote residual	S20	
	solvent.		
S23.	Possible four regioisomers obtained from cyclotetranerization of	S21	
	3-substituted phthalonitrile.		
S24 .	Possible four conformational isomers of 2 originated from the different	S21	
	orientations of 2-substituted alkoxy chains on the phenyl units.		
S25 .	Selected region of ${}^{1}H$ NMR spectra for 1 and 2 inCDCl ₃ . Insets mean side group	S22	
	conformation relative to Pc core.		
S26.	Thermogravimetric analysis curve for 1 and 2 (under N2 atmosphere,	S22	
	scan rate 10 °C/min).		
S27.	Polarizing optical microscopic images for 1 and 2 at room temperature.	S23	
	Images a) and c) were taken under open polarizer. Images b) and d) were		
	taken under crossed polarizer.		
S28.	DSC profiles for 1 at scan rate 10 °C/min under N_2 flow.	S23	
S29.	DSC profiles for 2 at scan rate 10 °C/min under N_2 flow.	S23	

Contents List			
Fig.	Caption	Page	
S30.	Liquid thin film sandwiched by two quartz plates for 1 (left) and 2 (right).	S24	
	Small amount of the liquid sample was put on quartz plate by spatula, and		
	Then sandwiched by another quartz plate. The sandwiched sample was rubbing		
	With these quartz plates.		
S31.	UV-vis absorption (solid line) and fluorescence (dashed line) spectra for 1	S24	
	in chloroform solution. $\boldsymbol{\varepsilon}$ means molar extinction coefficient. Excitation		
	wavelength for fluorescence spectrum was 625 nm.		
S32.	UV-vis absorption (solid line) and fluorescence (dashed line) spectra for 2	S24	
	in chloroform solution. $\boldsymbol{\varepsilon}$ means molar extinction coefficient. Excitation		
	wavelength for fluorescence spectrum was 625 nm.		
S33.	UV-vis absorption (solid line) and fluorescence (dashed line) spectra for 3	S25	
	in chloroform solution. $\boldsymbol{\varepsilon}$ means molar extinction coefficient. Excitation		
	wavelength for fluorescence spectrum was 625 nm.		
S34.	Fluorescence spectra for 2 in solvent-free liquid state.	S25	
	Liquid thin film sandwiched by two quartz plates was used for this measurement.		
	The liquid thin film was heated by hot stage (METTLER TOLEDO FP82HT) for		
	10 minutes, then the sample was quickly transferred from hot stage to spectrometer		
	and fluorescence of this sample was measured.		
S35.	a-d) Comparison of the variation of absorption (a and b) and fluorescence	S26	
	(c and d) spectra for 2 and 3 in chloroform under irradiating by simulated		
	sunlight. e and f) Time-dependent change of absorbance (e) or fluorescence		
	intensity (f) ratio at 707 nm. The slopes of least squares line mean photo-degradation		
	rate of the samples.		

Table	Caption	Page
S1.	Polarity effect of solvents on wavelength of fluorescence.	S25

Experimental section

Materials and equipment

All commercial available chemicals were used without further purifications unless otherwise noted. 4A molecular sieves and potassium acetate (AcOK) were dried at 200 °C in vacuo in prior to use. 1-Butanol and 1-dodecanol for synthesis of phthalocyanines were dried over 4A molecular sieves in prior to use. 2-Dicyclohexylphosphino-2',6'-dimethoxybiphenyl (Sphos) and tetrakis(triphenylphosphine)palladium (0) (Pd(PPh₃)₄) were purchased from Sigma Aldrich. Palladium acetate (Pd(OAc)₂), dichlorobis-(triphenylphosphine)palladium (II) (PdCl2(PPh3)2), AcOK, tripotassium phosphate (K_3PO_4) , potassium carbonate (K_2CO_3) , Li metal, and all solvents were purchased from WAKO pure chemical. Bis(pinacolato)diboron was purchased from Matrix Scientific. 2-Hexyldecylbromide and 2, 5-dimethoxyphenyl boronic acid were purchased from Tokyo Chemical Industry. ¹H and ¹³C NMR measurements were carried out by using a Bruker BioSpin AVANCE NEO 400 OneBay (400.13 and 100.61 MHz for ¹H and ¹³C, respectively). Chemical shifts are reported relative to internal tetramethylsillane (TMS). Chemical shifts are expressed in δ (ppm) values, and coupling constants are expressed in hertz (Hz). The following abbreviations are used: s = singlet, d = doublet, dd = doubledoublet, t = triplet, quin = quintet, m = multiplet, brs = broad singlet, br = broad. High resolution atmospheric pressure chemical ionization time-of-flight (HR-APCI-TOF)-Mass spectra were recorded with Bruker micrOTOF-II. Fourier transfer infra-red (FT-IR) absorption spectra were recorded on Shimazu IR Prestige-21 with Dura Sample IR II (Kyoto, Japan).UV-visible absorption spectra were recorded with Shimazu UV-2600 for solution state spectra and JASCO V-650 for neat state spectra. Fluorescence spectra were recorded with JASCO spectrofluorometer FP-8600. Excitation wavelength was 625 nm for solution and thin film, respectively. Polarizing optical microscopic observation was carried out with polarizing optical microscope (NIKON ECLIPSE LV100ND) equipped with a hot stage (METTLER TOLEDO FP82HT Hot Stage). Recycling preparative HPLC was carried out with LC-908W (Japan Analytical Industry). Thermogravimetric analyses (TGA) were carried out with Seiko Instruments EXSTAR TG/DTA6200 under nitrogen gas flow at scan rate 10 °C/min. Differential scanning calorimetry (DSC) was carried out with Hitachi High-tech Science DSC7020 with liquid nitrogen cooling under nitrogen gas flow. X-ray diffractogram was recorded with Rigaku X-ray diffractometer RINT-Ultima / S2K (Cu Ka source). Column chromatography was carried out on silica gel (Wako gel C-200). Thin layer chromatography (TLC) was carried out on commercial Merck plates coated with silica gel 60F254. Photostability experiments were conducted with solar simulator (100W m⁻², Xe lamp, AM 1.5G, SAN-EI ELECTRIC, XES-151S). Quartz cells were filled with dilute chloroform solution of the samples ($c=10^{-5}$ M). The cells were stored under simulated sunlight over 3 hours. Proceeding of photo-degradation was monitored by absorption and fluorescence spectral change each 30 minutes.

Synthesis

Scheme S1. Sythetic route for di(2-hexyldecyloxy)benzene boronic acid pinacol ester (**4** and **6**).

3, 5- Di(2-hexyldecyloxy)benzeneboronic acid pinacol ester (4 in Scheme S1)[S1]

The title compound was prepared by palladium-catalyzed Miyaura-Ishiyama borylation.^[S2] A flask containing 3, 5-di(2-hexyldecyloxy)bromobenzene^[S1] (612 mg, 0.960 mmol), AcOK (280 mg, 2.85 mmol, 3eq.), bis(pinacolato)diboron (B₂pin₂) (366 mg, 1.43 mmol, 1.5eq.) and PdCl₂(PPh₃)₂ (73 mg, 0.095 mmol, 0.1eq.) was filled with Ar. Deoxygenaized dioxane (3.2 mL) was added to the mixture with syringe through septum. The mixture was heated at 80 °C for 72 hs. After cooling to r.t, the reaction mixture was diluted with *n*-hexane. This mixture was filtrated to remove insoluble chemicals. The filtrate was washed with water and brine. The organic layer was dried over Na₂SO₄. After filtration, the solvent was evaporated *in vacuo*. The crude product was purified with recycling preparative HPLC (CHCl₃) to obtain colorless oil. Yield: 67% ¹H NMR (400.13 MHz, CDCl₃) δ (ppm): 6.92(d, *J*=2.4Hz, *H*_a, 2H), 6.56(t, *J*=2.2Hz, *H*_b, 1H), 3.84(d, *J*=5.6Hz, -OC*H*₂-(*H*_c), 4H), 1.74(brs, -OCC*H*-(*H*_d), 2H), 1.43-1.27(m, -(C*H*₂)₁₂- and -C*H*₃ of pinacol unit, 60H), 0.90-0.86(m, -C*H*₃(*H*₁), 12H). ¹³C NMR (100.16MHz, CDCl₃) δ (ppm):160.65, 112.63, 105.35, 84.15, 71.07, 38.54, 32.35, 32.32, 32.30, 31.88, 30.47, 30.14, 30.04, 29.77, 27.31, 25.25, 23.11, 14.52. HR-APCI-TOF-Mass (positive) found *m*/z: 683.6046, calcd. for C₄₄H₈₁O₄B *m*/z: 683.6259 [M]⁺.

Fig. S1 HR-APCI-TOF-Mass spectrum of 3, 5-di(2-hexyldecyloxy)benzeneboronic acid pinacol ester (4).

Fig. S2 ¹H NMR spectrum of 3, 5-di(2-hexyldecyloxy)benzeneboronic acid pinacol ester (**4**) in CDCl₃. Peaks marked with asterisk denote residual solvent and internal standard.

Fig. S3 ¹³C NMR spectrum of 3, 5-di(2-hexyldecyloxy)benzeneboronic acid pinacol ester (4) in CDCl₃. The peak marked with asterisk denotes residual solvent.

2, 5- Di(2-hexyldecyloxy)benzeneboronic acid pinacol ester (6 in Scheme S1)[S1]

The synthetic method was the same for that of **4**. 2, 5-di(2-hexyldecyloxy)bromobenzene ^[S1] was used as the starting material instead of 3, 5-di(2-hexyldecyloxy)bromobenzene. The target compound was obtained as colorless oil. Yield: 51% ¹H NMR (400.13 MHz, CDCl₃) δ (ppm): 7.18(d, *J*=3.2Hz, *H*_a, 1H), 6.89(dd, *J*=3.2, 5.6Hz, *H*_b, 1H), 6.75(d, *J*=9.2Hz, *H*_c, 1H), 3.78(d, *J*=5.2Hz, -OC*H*₂-(*H*_d), 4H), 1.78-1.56(m, -OCC*H*-(*H*_e), 2H), 1.54-1.32(m, -(C*H*₂)₁₂- and -C*H*₃ of pinacol unit, 60H), 0.89-0.86(m, -C*H*₃(*H*_g), 12H). ¹³C NMR (100.16MHz, CDCl₃) δ (ppm):158.61, 153.34, 122.33, 118.68, 115.78, 113.18, 83.70, 72.18, 71.81, 38.77, 38.60, 32.35, 32.33, 32.30, 31.83, 31.58, 30.59, 30.13, 30.09, 30.02, 29.79, 29.76, 27.36, 27.32, 27.29, 25.31, 23.09, 14.52. HR-APCI-TOF-Mass (positive) found *m/z*: 683.6341, calcd. for C₄₄H₈₁O₄B *m/z*: 683.6259 [M]⁺.

Fig. S4 HR-APCI-TOF-Mass spectrum of 2, 5-di(2-hexyldecyloxy)benzeneboronic acid pinacol ester (**6**).

Fig. S5 ¹H NMR spectrum of 2, 5-di(2-hexyldecyloxy)benzeneboronic acid pinacol ester (6) in CDCl₃. Peaks marked with asterisk denote residual solvent and internal standard.

Fig. S6 ¹³C NMR spectrum of 2, 5-di(2-hexyldecyloxy)benzeneboronic acid pinacol ester (6) in CDCl₃. The peak marked with asterisk denotes residual solvent.

Scheme S2. Synthetic route for 3-di(2-hexyldecyloxyphenyl)phthalonitriles (5 and 7).

3-[3', 5'-Di(2-hexyldecyloxy)phenyl)phthalonitrile (5 in Scheme S2)

The title compound was prepared by palladium-catalyzed Suzuki-Miyaura coupling in using SPhos as a ligand.^[S3] The reaction condition was followed to previous report.^[S4] A flask containing 3-iodophthalonitrile^[S5] (118 mg, 0.454 mmol, 1.3eq.), 3, 5- Di(2-hexyldecyloxy)benzeneboronic acid pinacol ester (**4**) (245 mg, 0.358 mmol), K₃PO₄ (310 mg, 1.40 mmol, 4eq.), Pd(OAc)₂ (14 mg, 0.035 mmol, 0.1eq.) and SPhos (29mg, 0.070 mmol, 0.2eq.) was filled with Ar. 6.9 mL of deoxygenaized mixed solvent (toluene / 1,2-dimethoxyehane (DME) / H₂O, 1:1:2, v/v/v) was added to the mixture

with syringe through septum. The mixture was refluxed for 72 hs. The reaction mixture was cooled to r.t, and extracted with ethyl acetate. The organic layer was washed with water and brine. The organic layer was dried over Na₂SO₄. After filtration, the solvent was evaporated *in vacuo*. The crude product was purified with silica gel column chromatography ($R_f = 0.33$, AcOEt : *n*-hexane = 1 :15, v/v) and recycling preparative HPLC (CHCl₃) to obtain as colorless oil. Yield: 65% ¹H NMR (400.13 MHz, CDCl₃) δ (ppm): 7.82-7.73(m, *H*_{abc}, 3H), 6.65-6.59(m, *H*_{de}, 3H), 3.89(d, *J*=7.2Hz, -OC*H*₂-(*H*_f), 4H), 1.81-1.78(m, -OCC*H*-(*H*_f), 2H), 1.49-1.30(m, -(C*H*₂)₁₂-, 48H), 0.92-0.88(m, -C*H*₃(*H*_h), 12H). ¹³C NMR (100.16MHz, CDCl₃) δ (ppm):160.86, 147.54, 137.98, 134.04, 132.68, 132.01, 117.27, 115.71, 115.15, 114.50, 107.24, 102.54, 71.23, 37.97, 31.91, 31.86, 31.37, 30.01, 29.68, 29.58, 29.33, 26.85, 26.83, 22.68, 14.11. HR-APCI-TOF-Mass (negative) found *m/z*: 684.5661, calcd. for C₄₆H₇₂N₂O₂*m/z*: 684.5588 [M]⁻. FT-IR (ATR) v/ cm⁻¹: 2233.57 (-CN)

Fig. S7 HR-APCI-TOF-Mass spectrum of 3-[3', 5'-di(2-hexyldecyloxy)phenyl]phthalonitrile (5).

Fig. S8 ¹H NMR spectrum of 3-[3', 5'-di(2-hexyldecyloxy)phenyl]phthalonitrile (**5**) in CDCl₃. Peaks marked with asterisk denotes residual solvent and internal standard.

Fig. S9 ¹³C NMR spectrum of 3-[3', 5'-di(2-hexyldecyloxy)phenyl]phthalonitrile (5) in CDCl₃. The peak marked with asterisk denotes residual solvent.

3-[2', 5'-Di(2-hexyldecyloxy)phenyl]phthalonitrile (7 in Scheme S2)

The synthetic method and purifications were the same for that of **5.** 2, 5-Di(2-hexyldecyloxy)benzeneboronic acid pinacol etster (**6**) was used as the starting material instead of 3, 5-di(2'-hexyldecyloxy)benzeneboronic acid pinacol ester. The target compound was obtained as colorless oil. Yield: 45% TLC (silica gel): $R_f = 0.55$ (AcOEt : *n*-hexane = 1:30, v/v) ¹H NMR (400.13 MHz, CDCl₃) δ (ppm): 7.76-7.67(m, H_{abc} , 3H), 6.97-6.91(m, ArH, 2H), 6.82(d, J=2.8Hz, ArH, 1H), 3.80-3.79(m, -OCH₂-(H_d), 4H), 1.77-1.73(m, -OCCH-(H_e), 1H), 1.62(brs, -OCCH-(H_f), 1H), 1.46-1.18(m,-(CH₂)₁₂-, 48H), 0.90-0.85(m, -CH₃(H_g), 12H). ¹³C NMR (100.16MHz, CDCl₃) δ (ppm):153.67, 150.35, 145.12, 135.62, 132.45, 132.06, 126.64, 117.18, 117.11, 116.70, 116.16, 115.49, 113.86, 72.18, 38.47, 38.32, 32.31, 32.26, 32.21, 31.86, 31.77, 30.43, 30.39, 30.10, 30.04, 29.97, 29.73, 27.23, 27.15, 23.08, 14.51. HR-APCI-TOF-Mass (negative) found *m/z*: 684.5552, calcd. for C₄₆H₇₂N₂O₂ *m/z*: 684.5588 [M]⁻. FT-IR (ATR) *v*/ cm⁻¹: 2233.55 (-CN)

Fig. S10 HR-APCI-TOF-Mass spectrum of 3-[2', 5'-di(2-hexyldecyloxy) phenyl]phthalonitrile (**7**).

Fig. S11 ¹H NMR spectrum of 3-[2', 5'-di(2-hexyldecyloxy)phenyl]phthalonitrile (7) in CDCl₃. Peaks marked with asterisk denote residual solvent and internal standard.

Fig. S12 ¹³C NMR spectrum of 3-[2', 5'-di(2-hexyldecyloxy)phenyl]phthalonitrile (7) in CDCl₃. The peak marked with asterisk denotes residual solvent.

Scheme S3. Synthetic route for 3-(2', 5'-dimethoxyphenyl)phthalinitrile (8).

3-(2', 5'-Dimethoxyphenyl)phthalonitrile (8 in Scheme S3)

A flask containing 3-iodophthalonitrile^[S5] (401 mg, 1.58 mmol), 2, 5-dimethoxyphenylboronic acid (373 mg, 2.05 mmol), K₂CO₃ (468 mg, 3.39 mmol) and Pd(PPh₃)₄ (181 mg, 0.156 mmol) was filled with Ar. Degassed mixed solvent (5.6 ml, toluene/THF/H₂O (3:1:1.6 v/v/v)) was added to the mixture. The mixture was refluxed for 36 hs under Ar atmosphere. The reaction mixture was cooled to room temperature, and extracted with ethyl acetate. The organic layer was washed with water and brine, and dried over Na₂SO₄. After filtration, the solvent was evaporated *in vacuo*. The crude product was purified with column chromatography (SiO₂, eluent: CH₂Cl₂:AcOEt = 20:1) and recycling preparative HPLC (CHCl₃) to obtain a white solid (62%). ¹H NMR (400.13 MHz, CDCl₃); δ (ppm): 7.77-7.69 (m, Ar*H*, 3H), 6.97 (m, Ar*H*, 2H), 6.81-6.80 (m, Ar*H*, 1H), 3.78 (s, -OC*H*₃, 3H), 3.77 (s, -OC*H*₃, 3H). ¹³C NMR (100.16MHz, CDCl₃); δ (ppm): 154.03, 150.80, 144.58, 135.66, 133.24, 132.34, 126.44, 116.86,

116.83, 116.71, 116.43, 116.39, 115.78, 113.04, 56.35, 56.28. FT-IR (ATR); *υ* (cm⁻¹): 2233.57 (-CN). HR-APCI-TOF-Mass; found *m/z*: 264.0880, calcd. for C₁₆H₁₂O₂N₂ *m/z*: 264.0893 [M].

Fig. S13 HR-APCI-Mass spectrum of 3-(2', 5'-dimethoxy phenyl)phthalonitrile (**8**).

Fig. S14 ¹H NMR spectrum of 3-[2', 5'-di(2-hexyldecyloxy)phenyl]phthalonitrile (**8**) in CDCl₃. Peaks marked with asterisk denote residual solvent and internal standard.

Fig. S15 ¹³C NMR spectrum of 3-(2', 5'-dimethoxyphenyl)phthalonitrile (**8**) in CDCl₃. The peak marked with asterisk denotes residual solvent.

Scheme S4. Synthetic route for Pc1 and Pc2.

1, 8, 15, 22-Tetra[3', 5'-di(2-hexyldecyloxyphenyl)]phthalocyanine (1 in Scheme S4)

The title compound was prepared by Linstead's method.^[S6] Li metal (27 mg, 3.9 mmol) was dissolved in dry 1-dodecanol (3.5 mL) at 100 °C under Ar. After Li was perfectly dissolved, the mixture was cooled to r.t. To this mixture 3-[3', 5'-di(2-hexyldecyloxyphenyl)]phthalonitrile (**5**) (239mg, 0.349 mmol) was added. The mixture was heated at 200 °C for 10hs under Ar. After cooling to r.t, the reaction mixture was diluted with methanol. The precipitate was collected with filtration and residue was washed with methanol several times. The crude product was purified with column chromatography (Al₂O₃ / CH₂Cl₂, R_f=1.0). Further purification was carried out with recycling preparative HPLC (CHCl₃). The title Pc derivative was obtained as dark green viscous oil. Yield: 29% ¹H NMR (400.13 MHz, CDCl₃) δ (ppm): 8.87 (dd, *J*=2.0, 3.2Hz, *H*_a, 4H), 8.10-8.07(m, *H*_{bc}, 8H), 7.41(d, *J*=2.0Hz, *H*_d, 8H), 6.97(t, *J*=2.2Hz, *H*_e, 4H), 3.99(d, *J*=5.6Hz, -OC*H*₂-(*H*_f), 16H), 1.81(quin, *J*=6.0Hz, -OCC*H*-(*H*_g), 8H), 1.46-0.61(m, aliphatic -C*H*₂-, 240H), -0.23(s, -N*H*(*H*_f), 2H). HR-APCI-Mass (negative) found *m*/*z*: 2740.2675, calcd.for C₁₈₄H₂₉₀N₈O₈ *m*/*z*: 2740.2526 [M]⁻. UV-vis (in CHCl₃) : $\lambda_{max}(log\varepsilon) =$ 715(4.99), 681 (4.96), 653 (4.55), 619(4.38), 341(4.79). Fluorescence (in CHCl₃, $\lambda_{ex} = 625$ nm): $\lambda_{FL} =$ 718 nm.

Fig. S16 HR-APCI-TOF-Mass spectrum of 1.

Fig. S17 ¹H NMR spectrum of 1 in CDCl₃. Peaks marked with asterisk denote residual solvent and internal standard.

1, 8, 15, 22-Tetra[2', 5'-di(2-hexyldecyloxyphenyl)]phthalocyanine (2 in Scheme S4)

The synthetic method and purifications were the same for that of **1**. 3-[2', 5'-Di(2-hexyldecyloxyphenyl)]phthalonitrile (**7**) was used as the starting material instead of **5**. The title Pc derivative was obtained as dark green oil. Yield: 6% ¹H NMR (400.13 MHz, CDCl₃) δ (ppm): 8.72(br, H_a , 4H), 8.04(br, H_{bc} , 8H), 7.58-7.29(m, H_{def} , 12H), 3.99-3.59(m, -OC H_2 -(H_{hg}), 16H), 1.83(br, *exo*-OCCH-(H_i), 4H), 1.48-0.15(m, aliphatic -C H_2 -, 244H), -0.51(s, -N $H(H_j)$, 2H). HR-APCI-Mass (negative) found m/z: 2740.2132, calcd.for C₁₈₄H₂₉₀N₈O₈ m/z: 2740.2526 [M]⁻. UV-vis (in CHCl₃) : $\lambda_{max}(\log \varepsilon) = 707(5.05)$, 673 (5.00), 646(4.54), 611(4.37), 346(4.75). Fluorescence (in CHCl₃, $\lambda_{ex} = 625$ nm): $\lambda_{FL} = 709$ nm.

Fig. S18 HR-APCI-TOF-Mass spectrum of 2.

Fig. S19 ¹H NMR spectrum of 2 in CDCl₃. Peaks marked with asterisk denote residual solvents and internal standard.

Scheme S5. Synthetic route for Pc3.

1, 8, 15, 22-Tetra(2', 5'-dimethoxyphenyl)phthalocyanine (3 in Scheme S5)

Li metal (13 mg, 1.9 mmol) was dissolved in dry 1-butanol (3.8 mL) at 70 °C under Ar. The mixture was cooled to room temperature, and 3-(2', 5'-dimethoxyphenyl)phthalonitrile (**8**) (100 mg, 0.378 mmol) was added to this mixture. The mixture was refluxed for 4 hs under Ar. After cooling to room temperature, the reaction was quenched with acetic acid and methanol. The precipitate was collected with filtration, and washed with methanol for several times. The crude product was purified with the recrystallization (CH₂Cl₂ / acetone) to isolate *C*_{4h}-regioisomer, and the precipitated solid was collected with filtration. Yield:13% ¹H NMR (400.13 MHz, CDCl₃); δ (ppm): 8.70 (d, *J*=7.2Hz, *H*_a, 4H), 8.11 (t, *J*=7.4Hz, *H*_b, 4H), 8.05 (d, *J*=7.2Hz, *H*_c, 4H), 7.48-7.33 (m, *H*_{def}, 12H), 3.96 (s, -OCH₃(*H*_g), 12H), 3.48 (brs, -OCH₃(*H*_h), 12H), -0.49 (s, -NH(*H*_i), 2H). ¹³C NMR (100.16MHz, CDCl₃); δ (ppm): 154.32, 153.16, 136.33, 131.26, 129.86, 123.06, 114.39, 56.58, 56.46. HR-APCI-TOF-Mass; found *m/z*: 1058.3760, calcd. for C₆₄H₅₀N₈O₈ *m/z*: 1058.3746 [M]. UV-Vis (in CHCl₃): λ_{max} (nm) (log ε) = 707 (5.09), 672 (5.06), 643 (4.60), 610 (4.44), 346 (4.81). Fluorescence (in CHCl₃, $\lambda_{ex} = 625$ nm): $\lambda_{FL} = 709$ nm.

Fig. S20 HR-APCI-TOF Mass spectra for 3.

Fig. S21 ¹H NMR spectrum for **3** in CDCl₃. Peaks marked with asterisk denote residual solvent and internal standard.

Fig. S22¹³C NMR spectrum for 3 in CDCl₃. The peak marked with asterisk denotes residual solvent.

Fig. S23 Possible four regioisomers obtained from cyclotetramerization of 3-substituted phthalonitrile.

Fig. S24 Possible four conformational isomers of **2** originated from the different orientations of 2-substituted alkoxy chains on the phenyl units. Arrows denote orientations of four alkoxy chains substituted at 2-position on phenyl units relative to phthalocyanine surface (blue: up, red: down). In contrast to the well-resolved and clear ¹H NMR spectrum of **1** (Figure S14), **2** with four asymmetric 2, 5-alkoxy chains substituted phenyl units showed broad signals in ¹H NMR spectrum (Figure S16, S19), which were probably due to coexistence of several conformational isomers. These isomer mixtures originated from the rotation barrier of single bond between phthalocyanine core and the phenyl unit with steric 2-substitution^[S1].

Fig. S25 Selected region of 1 H NMR spectra for 1 (lower) and 2 (upper) in CDCl₃. Insets mean Side group conformation relative to Pc core.

Fig. S26 Thermogravimetric analysis curve for 1 and 2 (under N_2 atmosphere, scan rate 10 °C/ min).

Fig. S27 Polarizing optical microscopic images for 1 and 2 at room temperature. Images a) and c) were taken under open polarizer. Images b) and d) were taken under crossed polarizer.

Fig. S28 DSC profiles for 1 at scan rate 10 $^{\circ}$ C/ min under N₂ flow.

Fig. S29 DSC profiles for 2 at scan rate 10 °C/min under N₂ flow.

Fig. S30 Liquid thin film sandwiched by two quartz plates for **1** (left) and **2** (right). Small amount of the liquid sample was put on quartz plate by spatula, and then sandwiched by another quartz plate. The sandwiched sample was rubbing with these quartz plates.

Fig. S31 UV-vis absorption (solid line) and fluorescence (dashed line) spectra for 1 in chloroform solution. ε means molar extinction coefficient. Excitation wavelength for fluorescence spectrum was 625 nm.

Fig. S32 UV-vis absorption (solid line) and fluorescence (dashed line) spectra for 2 in chloroform solution. ε means molar extinction coefficient. Excitation wavelength for fluorescence spectrum was 625 nm.

Fig. S33 UV-vis absorption (solid line) and fluorescence (dashed line) spectra for **3** in chloroform solution. ε means molar extinction coefficient. Excitation wavelength for fluorescence spectrum was 625 nm.

		λ _{FL} /nm						
Sample	<i>n</i> -hexane ^a	toluene ^b	CHCl ₃ ^c	THF ^d				
1	714	718	718	717				
2	706	709	709	708				

Table S1. Polarity effect of solvents on wavelength of fluorescence.

n.d.e

^a ε=1.90. ^b ε=2.38. ^c ε=4.70. ^d ε=18.5. ^e The datum was not obtained due to the insolubility.

 ε means dielectric constant of solvent.

3

The relative fluorescence quantum yields for **1**, **2**, and **3** were obtained from following equation S1. β -Tetra-*tert*-butylphthalocyanine was used as a standard sample (Φ_{st} =0.67 in toluene)^{S7}. All fluorescence spectra were recorded in toluene. The samples were excited at 625 nm.

709

709

707

$$\Phi = \Phi_{\rm st} \left(\frac{\rm FA}{\rm FA_{\rm st}} \right) \left(\frac{\rm A_{\rm st}}{\rm A} \right)$$
(Equation S1)

Where Φ and Φ_{st} are fluorescence quantum yield for unknown sample and standard sample (β -Tetra*tert*-butylphthalocyanine), respectively, FA and FA_{st} are integrated area of fluorescence spectra for unknown sample and standard sample, respectively, A and A_{st} are absorbance at excitation wavelength (625 nm) for unknown sample and standard sample, respectively.

Fig. S34 Fluorescence spectra for heating liquid film of **2**. Liquid film sandwiched by two quartz plates was used for this measurement. The liquid film was heated by hot stage (METTLER TOLEDO FP82HT) for 10 minutes, then the sample was quickly transferred from hot stage to spectrometer and fluorescence of the sample was measured.

Fig. S35 Comparison of the variation of absorption (a and b) and fluorescence (c and d) spectra for 2 and 3 in chloroform under irradiating by simulated sunlight. Time-dependent change of absorbance (e) or fluorescence intensity (f) ratio at 707 nm. The slopes of least squares line mean photo-degradation rate of the samples.

Supporting references

- S1. F. Lu, T. Takaya, K. Iwata, I. Kawamura, A. Saeki, M. Ishii, K. Nagura, and T. Nakanishi, *Sci. Rep.*, 2017, 7, 3416.
- S2. T. Ishiyama, M. Murata, and N. Miyaura, J. Org. Chem., 1995, 60, 7508.
- S3. R. Martin and S. L. Buchwald, Acc. Chem. Res., 2008, 41, 1461.
- S4. H. Suzuki, K. Kawano, K. Ohta, Y. Shimizu, N. Kobayashi, and M. Kimura, *ChemistryOpen*, 2016, 5, 150.
- S5. H. A. Moynihan and G. Claudon, CrystEngComm, 2010, 12, 2695.
- S6. P. A. Barrett, D. A. Frye, and R. P. Linstead, J. Chem. Soc. 1938, 1157.
- S7. D. M. Guldi, I. Zilbermann, A. Gouloumis, P. Vázquez, and T. Torres, J. Phys. Chem. B, 2004, 108, 18485.