Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Material

Metal organic framework/chitosan foams functionalized with polyethylene

oxide as sorbent for enrichment and analysis of bisphenols in beverages and

water

Shuo Li^a, Huizhong Si^a, Jianshu Li^b, Mengtian Jia^a, Xiaohong Hou^{b*}

^aSchool of Pharmacy, Shenyang Pharmaceutical University, Shenyang Liaoning Province, P. R.

China

^bSchool of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang Liaoning

Province, P. R. China

*Correspondence: Professor Xiaohong Hou, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China E-mail address: syphu_houxiaohong@163.com Fax: +86-24-43520209

Content list

- 1. Information of reagents and materials
- 2. Screening experiments of MOF/CS/PEO foams, Page 3.
- 3. Chemical structures of the five analytes (Fig. S1), Page 4.
- 4. Interaction mode between MIL-53 and bisphenols (Fig. S2), Page 5.
- 5. Interaction mode between UiO-66 and bisphenols (Fig. S3), Page 6.
- 6. Interaction mode between MIL-100 and bisphenols (Fig. S4), Page 7.
- 7. Interaction mode between MIL-101 and bisphenols (Fig. S5), Page 8.
- 8. Reusability of MIL-53(Al)/CS foam (Fig. S6), Page 9.
- 9. HPLC-FLD chromatograms of standard solution, spiked water sample and drink sample (Fig. S7), Page 10.
- 10. Binding energy (BE) and binding constants of MOFs towards bisphenols (Table S1), Page 11.
- 11. Factors and levels of orthogonal experiments (Table S2), Page 12.
- 12. Results analysis of the orthogonal experiments (Table S3), Page 13.
- 13. Precision and repeatability of analytical method (Table S4), Page 14.
- 14. Comparison of the current method with previously reported methods for the determination of bisphenols (Table S5), Page 15.

1. Information of reagents and materials

Polyethylene oxide was obtained from Macklin Chemistry Co. (Shanghai, China). Chitosan was purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Hydrochloric acid (HCl), sodium hydroxide (NaOH), sodium chloride (NaCl), and acetic acid glacial were gained from Damao Chemical Reagent Factory (Tianjin, China). Ethyl acetate, dichloromethane, and cyclohexane were acquired from Yuwang Group (Shandong, China). Glutaraldehyde was obtained from Fuchen Chemical Reagent Factory (Tianjin, China). Gelatin was obtained from Hengxing Chemical Reagent Factory (Tianjin, China). All of the above reagents were of analytical grade. HPLC-grade methanol, acetonitrile, acetone, and ethanol were bought from Yuwang Group (Shandong, China). Ultrapure water was obtained using a Milli-Q Reagent water system.

2. Screening experiments of MOF/CS/PEO foams

Different types of MOF/CS/PEO foams were placed into 10 mL of the sample solution (pH 7.0) spiked with 10 ng/L standard solutions of the five targets in a 10 mL centrifuge tube (Eppendorf tube) under vortex for 30 min. The foam was then taken out and placed into a 4 mL centrifuge tube (Eppendorf tube) with a pair of tweezers followed by drying with filter paper. Subsequently, 1 mL of acetone was added to desorb the analytes by vortexing for 30 min. The desorption solvent was dried with a gentle stream of nitrogen at 30°C and 200 μ L of initial mobile phase was used for the redissolution of the residues. Finally, the resulting solution was referred as an analytical solution for HPLC-FLD analysis after filtration through a 0.22 μ m organic membrane.

3. Chemical structures of the five analytes

Fig. S1 Chemical structures of the five analytes. (A) Bisphenol A (BPA), (B) Bisphenol B (BPB), (C) Bisphenol C (BPC), (D) Bisphenol AF (BPAF) and (E) Bisphenol F (BPF).

4. Interaction mode between MIL-53 and bisphenols

Fig.S2. Combination modes between MIL-53 and (A) BPA, (B) BPB, (C) BPC, (D) BPAF, (E) BPF. The ligands were displayed in ball-and-stick style by marking carbon atoms in green and oxygen atoms in red. The receptor was displayed in thin stick style by marking oxygen atoms in red and metal ions in orange.

5. Interaction mode between UiO-66 and bisphenols

Fig.S3. Combination modes between UiO-66 and (A) BPA, (B) BPB, (C) BPC, (D) BPAF, (E) BPF. The ligands were displayed in ball-and-stick style by marking carbon atoms in green and oxygen atoms in red. The receptor was displayed in thin stick style by marking oxygen atoms in red and metal ions in blue.

6. Interaction mode between MIL-100 and bisphenols

Fig.S4. Combination modes between MIL-100 and (A) BPA, (B) BPB, (C) BPC, (D) BPAF, (E) BPF. The ligands were displayed in ball-and-stick style by marking carbon atoms in green and oxygen atoms in red. The receptor was displayed in thin stick style by marking oxygen atoms in red and metal ions in orange.

7. Interaction mode between MIL-101 and bisphenols

Fig.S5. Combination modes between MIL-101 and (A) BPA, (B) BPB, (C) BPC, (D) BPAF, (E) BPF. The ligands were displayed in ball-and-stick style by marking carbon atoms in green and oxygen atoms in red. The receptor was displayed in thin stick style by marking oxygen atoms in red and metal ions in orange.

8. Reusability of MIL-53(Al)/CS/PEO foam

Fig. S6. Reusability of MIL-53(Al)/CS/PEO foam in VA-SPE for the target analytes under the optimal conditions.

9. HPLC-FLD chromatograms of standard solution, spiked water sample and drink sample

Fig. S7. HPLC-FLD chromatograms of standard solution (a), spiked water sample (10 ng/mL)(b), beverage sample of no. 4 (c). Peak identification: (1) BPF, (2) BPA, (3) BPB, (4) BPAF, (5) BPC.

A	UiO-66		MIL-100	MIL-100		IL-101	MIL-53	
Analyte	BE (kcal mol ⁻¹)	$\ln K_0$	BE (kcal mol ⁻¹)	$\ln K_0$	BE (kcal mo	l^{-1}) lnK_0	MIL-53 BE (kcal mol ⁻¹) -7.38 -7.55 -7.97 -6.94	$\ln K_0$
BPA	-6.89	11.64	-5.0	8.44	-5.77	9.75	-7.38	12.47
BPB	-7.13	12.05	-5.04	8.51	-5.78	9.768	-7.55	12.76
BPC	-7.79	13.17	-5.0	8.44	-6.50	10.98	-7.97	13.47
BPAF	-6.39	10.80	-3.31	5.59	-5.38	9.09	-6.94	11.73
BPF	-6.46	10.92	-3.54	5.98	-6.52	11.02	-6.95	11.75

10. Table S1 Binding energy (BE) and binding constants of MOFs towards bisphenols

		5 I		
Levels		Facto	ors *	
	А	В	С	D
1	10	150	4:1	80
2	12	200	3:1	120
3	14	250	2:1	160

11. Table S2 Factors and levels of the orthogonal experiments

*A, the amount of MOFs (mg); B, glutaraldehyde dosage (µL); C, the proportions of CS/PEO (w/w); D, acetic acid glacial dosage (µL)

12. Table S3 Result analysis of the orthogonal experiments

No		Pecovery (%)			
INO.	А	В	С	D	- Recovery (78)
1	1	1	1	1	70.06
2	1	2	2	2	76.52
3	1	3	3	3	75.64
4	2	1	2	3	85.98
5	2	2	3	1	86.64
6	2	3	1	2	85.03
7	3	1	3	2	84.24
8	3	2	1	3	86.63
9	3	3	2	1	85.76
K1	222.22	240.28	241.72	242.46	
K2	257.65	249.79	248.26	245.79	
К3	256.63	246.43	246.52	248.25	
k1	74.073	80.093	80.573	80.820	
k2	85.883	83.263	82.753	81.930	
k3	85.543	82.143	82.173	82.750	
R	11.810	3.170	1.600	1.930	

*A, the amount of MOFs (mg); B, glutaraldehyde dosage (µL); C, the proportions of CS/PEO (w/w); D, acetic acid glacial dosage (µL)

Analyte	MDL	MQL	Interday precision (RSD%, $n = 18$)			Intraday precision (RSD%, $n = 9$)			Repeatability (RSD% $n = 6$)
	(µg/L)	µg/L) (µg/L)	Low ^a	Middle ^b	High ^c	Low ^a	Middle ^b	High ^c	$\frac{1}{(\text{KSD}\%, n=6)}$
Sample 1									
BPA	0.024	0.072	5.8	3.7	3.1	4.6	3.6	3.7	6.5
BPB	0.058	0.174	4.5	4.2	2.7	4.9	5.2	4.2	4.6
BPC	0.052	0.156	5.8	3.2	4.3	6.2	6.4	5.1	4.6
BPAF	0.047	0.141	6.3	4.1	3.6	7.0	3.8	2.9	5.2
BPF	0.029	0.087	7.2	5.3	4.1	5.8	4.5	4.6	3.8
Sample 2									
BPA	0.022	0.066	4.9	4.1	5.8	5.4	5.8	3.3	5.8
BPB	0.061	0.183	5.7	5.5	4.3	4.6	6.1	4.5	6.4
BPC	0.058	0.174	5.2	3.6	2.8	4.9	3.2	3.7	5.1
BPAF	0.049	0.147	6.8	5.4	3.4	6.3	4.7	2.3	3.7
BPF	0.031	0.093	7.1	6.9	4.6	3.9	4.4	3.1	4.6
Sample 3									
BPA	0.021	0.063	5.7	4.7	5.3	4.7	4.3	3.6	4.2
BPB	0.066	0.198	5.9	4.2	2.4	6.3	5.4	2.7	5.8
BPC	0.059	0.177	6.1	3.5	7.6	3.2	3.2	4.8	3.5
BPAF	0.050	0.150	7.2	3.7	4.3	4.6	2.8	5.1	7.4
BPF	0.027	0.081	4.3	2.9	2.3	6.9	4.1	3.6	5.3
Sample 4									
BPA	0.026	0.078	4.6	4.4	2.6	5.4	4.7	4.8	3.8
BPB	0.062	0.186	5.8	3.2	3.8	6.6	6.7	3.6	4.3
BPC	0.056	0.168	6.3	5.1	4.1	3.7	5.6	2.9	3.2

13. Table S4 Limits of detection, limits of quantification, precision and repeatability of analytical method

BPAF	0.055	0.165	3.8	5.4	3.5	4.8	3.1	3.5	3.9
BPF	0.026	0.078	4.7	5.7	2.7	3.6	5.2	4.6	5.6
Sample 5									
BPA	0.023	0.069	6.7	5.3	3.4	6.4	3.6	2.4	5.3
BPB	0.052	0.156	7.4	4.1	4.0	3.4	4.2	3.1	4.2
BPC	0.054	0.162	3.9	6.3	5.5	3.7	4.1	4.2	7.3
BPAF	0.044	0.132	6.2	3.6	3.7	3.2	3.9	3.4	2.8
BPF	0.032	0.096	4.1	4.2	4.6	5.1	4.4	2.6	5.6
Sample 6									
BPA	0.019	0.057	6.9	3.5	2.8	5.2	4.3	2.4	7.4
BPB	0.060	0.18	5.7	7.1	3.0	3.9	5.2	3.6	5.2
BPC	0.062	0.186	4.8	4.8	4.1	5.9	3.3	2.7	4.2
BPAF	0.059	0.177	5.8	3.9	2.9	6.4	4.6	3.1	3.8
BPF	0.033	0.099	4.0	4.6	3.5	5.7	4.1	2.9	6.0
Sample 7									
BPA	0.025	0.075	5.1	5.3	4.1	5.1	3.1	2.4	7.4
BPB	0.065	0.195	6.8	4.8	3.2	6.2	4.2	4.7	4.8
BPC	0.057	0.171	7.0	5.5	2.4	3.9	5.6	2.9	7.2
BPAF	0.063	0.189	3.8	4.2	4.2	5.8	3.2	3.3	4.4
BPF	0.024	0.072	6.4	2.5	2.0	5.6	4.7	3.2	3.5

a : 0.2 $\mu g/L$ for BPA and BPF, 0.4 $\mu g/L$ for BPB, BPF and BPAF

b : 1 μ g/L for BPA and BPF, 2 μ g/L for BPB, BPF and BPAF

 $c:7.5~\mu g/L$ for BPA and BPF, 15 $\mu g/L$ for BPB, BPF and BPAF

Analyte	Method	Adsorbent material	Matrix	Mass of adsorbents	Desorption solvent and its volume	MDL (µg/L)	References
BPA, BPB, BPAP, BPAF	DSPE-HPLC	Ni@N-GrTs ^a	Milk	5 mg	2 mL Acetone	0.1-0.2	[33]
BPA, BPB, BPF, BPAP, BPAF	SPE-HPLC	MagG@PDA@Zr-MOF ^b	Water	30 mg	1 mL Methanol	0.1-1	[34]
BPA, BPB, BPS, BPF, BPZ, BPAP, BPAF	SPE-HPLC-MS/MS	DMIP ^c	Sewage, sludge	200 mg	12 mL Methanol	0.0007-16.3 ng/L	[35]
BPA, BPB, BPC,BPAF, BPF	VA-SPE-HPLC	MIL-53(Al)/chitosan/PEO foam	Water, Beverage	12 mg	1 mL Acetone	0.019-0.065	Present work

14. Table S5 Comparison of the current method with previously reported methods for the determination of bisphenols

a: nickel-based N-doped graphene tubes

b: magnetic graphene @polydopamine @Zr-MOF

C: dummy molecularly imprinted