Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic supplementary information

Theoretical and experimental study of the coordination ability of 4,6dimethylpyrimidinylhydrazone diacetylmonooxime towards Ni(II), Mn(II), Fe(III) and Co(III) ions

Vladimir V. Lukov ^a, Arshak A. Tsaturyan ^{b*}, Yulia P. Tupolova ^a, Leonid D. Popov ^a, Igor N. Shcherbakov ^a Vladimir E. Lebedev ^a, Olga I. Askalepova ^a, Tatiana A. Lastovina ^c, Vladimir A. Lazarenko ^d, Victor N. Khustalev ^e, Jordan C. Poler ^f

^a Department of Chemistry, Southern Federal University, 7, Zorge Str., Rostov-on-Don, 344090 Russia
 ^b Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Av. 194/2 Rostov-on-Don, 344090 Russia
 ^c Southern Scientific Center, Russian Academy of Sciences, 41 Chehova str, Rostov-on-Don, 344006 Russia
 ^d National Research Center "Kurchatov Institute", Acad. Kurchatov Sq., 1, Moscow, 123182, Russia
 ^e Inorganic Chemistry Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklay St., Moscow, 117198, Russia
 ^f Department of Chemistry, University of North Carolina at Charlotte, 28223 Charlotte, NC, USA

*Corresponding author: <u>caturyan@sfedu.ru</u> (TAA)

Figure S1. Sketch of the of the tautomeric form of the hetarilhydrazone 1 and the relative stability energies (kcal/mol) in gas phase and water medium (value in brackets) obtained for optimized structures at B3LYP/6–311++G(d,p) level of theory.

Figure S2. Crystal structure of $H_2L \cdot \frac{1}{2}H_2O$ along the crystallographic *b* axis.

	Table S1. Structural	characteristics	of the HBs	in the cr	vstals of H ₂ L	$4 \cdot \frac{1}{2} H_2 O$
--	----------------------	-----------------	------------	-----------	----------------------------	-----------------------------

HB	D – H, Å	HA, Å	DA, Å	D - HA, deg			
01–H10…N5 ⁱ	0.84(2)	1.89(2)	2.723(1)	168(2)			
O2–H2O…N4 ⁱⁱ	0.88(2)	2.21(2)	2.970(1)	145(2)			
N3–H3N…O1 ⁱⁱⁱ	0.90(2)	2.49(2)	3.238(1)	141(2)			
(symmetry codes: (i) $x-1/2 - v+1 - z+1/2$: (ii) $x+1/2 - v+1 - z+1/2$: (iii) $x+1/2 - v+1 - z-1/2$)							

Figure S3. Experimental (panel a) and simulated (panel b) electronic absorption spectra of hetarylhydrazone **1** at various pH in H₂O:EtOH (1:1) medium, C = 1.95 10^{-5} M Experimental UV spectra shown for the ligand solution set to pH=1.5 - red line, pH=6.5 - yellow line, and pH=12.5 -blue line. Simulated spectra by using TD-CAMB3LYP/6-311++G(d,p) level of theory with accounting ethanol medium for

neutral from of hetarilhydrazone 1 - black dash dot line, dissociated form through OH group - red dash line and through NH group - red dash line.

Figure 4. Fragment of the infinite HB chain in crystals of 2a.

Table S2. Structural characteristics of the HBs in the crystals of 2a

			<u> </u>	
HB	D – H, Å	HA, Å	DA, Å	D - HA, deg
O2–H2…Cl2	0.82	2.16	2.9322(19)	157
$N7-H7C12^{(i)}$	0.86	2.34	3.181(2)	164
01–H104	0.82	1.79	2.570(3)	158
O4–H4ACl1 ⁽ⁱⁱ⁾	0.85	2.30	3.143(2)	172
O4–H4B…Cl1	0.85	2.26	3.112(2)	177
N9–H9Cl1	0.86	2.56	3.158(2)	128
· · · · · · · · · · · · · · · · · · ·	• • • •	(•	

(symmetry codes: (i) 1-x,1-y,1-z; (ii) 1-x, 2-y, 2-z)

Table S3. Comparison of the selected bond lengths (Å) in compounds 2a, 2c and 3 from single crystal diffraction experiment.

Bond	2a (1	M=Ni)	2c (M=Mn) ^a	3 (M	=Co)
M-N _{hydr}	Ni-N1	1.995(2)	$2.210(2) \div 2.219(2)$	Co1-N3	1.869(3)
-	Ni-N2	2.001(2)			
M-N _{ox}	Ni1–N3	2.1193(18)	$2.295(2) \div 2.304(2)$	Co1-N10	1.914(3)
	Ni1–N4	2.147(2)			
M-N _{pyr}	Ni1–N1	2.174(2)	$2.206(2) \div 2.286(2)$	Co1–N2	2.031(3)
	Nil-N6	2.1340(17)		Col-N4	2.006(3)

^a Statistic over two independent molecules in unit cell.

Table S4. Structural characteristics of the HBs in the crystals of 3

HB	D – H, Å	HA, Å	DA, Å	D - HA, deg
N7–H7O3	0.86	2.10	2.951(4)	168
N7–H7…O4	0.86	2.57	3.203(4)	132
N9–H9O1 ⁽ⁱⁱⁱ⁾	0.86	1.80	2.651(4)	170

Figure S5. The titration curve of hetarylhydrazone 1.

During the potentiometric measurements it was established that hetarylhydrazone under study revealed two protonation centers with close pKa values (Δ pKa<2,8) in the whole pH range. Therefore in order to calculate the pKa value the function of mean-value proton number has been used.¹

$$n = \frac{(2-a)C_R - [H^+] + [OH^-]}{C_R}$$
(1)

where a is neutralization degree, C_R -molar concentration of substance under study.

Under potentiometric titration of acid or protonated base by alkaline solution, one can obtain the set of corresponding values of hydrogen ion's free concentrations and mean-value proton n numbers connected between each other by the equation (2):

$$n = \frac{(1-n)\cdot 10^{-pH}}{K_2} + \frac{(2-n)\cdot 10^{-2pH}}{K_1K_2} , \quad (2)$$

where K_1 and K_2 are the dissociation constants of acid associated with ionic or non-ionic base for the first and second stage correspondingly.

The equation (2) can be represented as a linear dependence:

$$\frac{n}{(1-n)[H^+]} = \frac{1}{K_2} + \frac{1}{K_1 K_2} \cdot \frac{(2-n)[H^+]}{(1-n)}$$
(3)

$$\frac{n}{(1-n)[H^+]} = y \frac{(2-n)[H^+]}{(1-n)} = x$$

The pK_{a1}=2.39; pK $_{a2}$ =3.26 values have been obtained by the least-squares method.

Figure S6. Fitting of experimental potentiometric titration data to equation 3 for hetarylhydrazone **1**

The data for protolithic equilibrium constant calculations are shown in Table S1

Table S5. The data for protolithic equilibrium constant calculations (pK_{a1}, pK_{a2}) in the pH range of 2.61 - 4.27

V	pН	a	[H ⁺]	[OH ⁻]	n	у	X
0.1	2.61	0.1059	2.45E-03	4.07E-12	1.28	-1.86E+03	-6.30E-03

0.2	2.64	0.2118	2.29E-03	4.37E-12	1.22	-2.46E+03	-8.34E-03
0.3	2.68	0.3177	2.09E-03	4.79E-12	1.16	-3.47E+03	-1.10E-02
0.4	2.73	0.4236	1.86E-03	5.37E-12	1.11	-5.38E+03	-1.49E-02
0.5	2.78	0.5295	1.66E-03	6.03E-12	1.06	-1.14E+04	-2.82E-02
0.6	2.83	0.6354	1.48E-03	6.76E-12	0.99	1.30E+05	2.87E-01
0.7	2.89	0.7413	1.29E-03	7.76E-12	0.94	1.15E+04	2.16E-02
0.8	2.96	0.8472	1.10E-03	9.12E-12	0.88	6.61E+03	1.01E-02
0.9	3.03	0.9531	9.33E-04	1.07E-11	0.81	4.68E+03	5.94E-03
1.0	3.11	1.0590	7.76E-04	1.29E-11	0.75	3.80E+03	3.84E-03
1.1	3.20	1.1649	6.31E-04	1.58E-11	0.68	3.33E+03	2.59E-03
1.2	3.30	1.2708	5.01E-04	2.00E-11	0.60	3.04E+03	1.77E-03
1.3	3.41	1.3767	3.89E-04	2.57E-11	0.53	2.85E+03	1.21E-03
1.4	3.52	1.4826	3.02E-04	3.31E-11	0.44	2.62E+03	8.43E-04
1.5	3.66	1.5885	2.19E-04	4.57E-11	0.36	2.54E+03	5.59E-04
1.6	3.80	1.6944	1.58E-04	6.31E-11	0.27	2.29E+03	3.74E-04
1.7	4.00	1.8003	1.00E-04	1.00E-10	0.17	2.12E+03	2.21E-04
1.8	4.27	1.9062	5.37E-05	1.86E-10	0.08	1.63E+03	1.12E-04

The calculation of pK_{a3} was done by using following equation:

$$pK_{a} = pH + \lg \frac{(1-a)C_{R} - [H^{+}] + [OH^{-}]}{aC_{R} + [H^{+}] - [OH^{-}]}$$
(4)

Where a is neutralization degree, C_R -molar concentration of substance under study In the case of pH >5, the value of [H⁺] can be neglected.

Table S6. The data for protolithic equilibrium constant calculations (pK_{a3}) in the pH range of 10.53 - 11.36

V _{sum}	V for pK calcualtion	pН	a	$[\mathrm{H}^+]$	[OH-]	pK
2.1	0.1	10.53	0.1015	2.95E-11	0.000339	12.29762
2.2	0.2	10.75	0.203	1.78E-11	0.000562	11.92672
2.3	0.3	10.92	0.3045	1.2E-11	0.000832	11.89111

2.4	0.4	11.02	0.406	9.55E-12	0.001047	11.79334
2.5	0.5	11.14	0.5075	7.24E-12	0.00138	11.85244
2.6	0.6	11.21	0.609	6.17E-12	0.001622	11.80249
2.7	0.7	11.28	0.7105	5.25E-12	0.001905	11.79469
2.8	0.8	11.33	0.812	4.68E-12	0.002138	11.74555
2.9	0.9	11.36	0.9135	4.37E-12	0.002291	11.64655

It is difficult and challenging to accurately predict the pKa values of polyprotic compounds. There are only a few reports in the literature where theoretical calculations of pKa values accurately predicted experimental measurements of polyprotic compounds.²⁻⁵ Also, the task becomes more difficult while attempting to predict the pKa for OH or NH groups because these groups have such low acidity.⁶

The theoretical values of pKa were calculated by using thermodynamic cycle

The equilibrium constant of the studies reaction may be calculated as:

$$K_{a} = \frac{\left[R^{-}\right] \left[H^{+}\right]}{\left[HR\right]}$$

$$pK_{a} = -\log_{10} K_{a}$$
(5)
(6)

pKa value can be calculated from the Gibbs energy in the solution for the acid dissociation reaction:

$$pK_a = \frac{\Delta G_{aq}^*}{2.303RT} \tag{7}$$

Here ΔG^*_{aq} is the Gibbs free energy of dissociation for HR can be defined as: $\Delta G_{aq}^* = G_{aq}^*(H^+) + G_{aq}^*(R^-) - G_{aq}^*(HR)$ (8)

where * denotes the standard state condition in 1 M solution at 298.25 K. $2.303 RTpK_a = \Delta G_{aq}^* = \Delta G_{gas}^0 + \Delta \Delta G_{solv}^* + \Delta G^{0 \to *}$ (9)

Where
$$\Delta G_{gas}^{0}$$
 and $\Delta \Delta G_{solv}^{*}$ are given as:

$$\Delta G_{gas}^{0} = G_{gas}^{0}(R^{-}) + G_{gas}^{0}(H^{+}) - G_{gas}^{0}(HR)$$
(10)

$$\Delta \Delta G_{solv}^{*} = \Delta G_{solv}^{*}(R^{-}) + \Delta G_{solv}^{*}(H^{+}) - \Delta G_{solv}^{*}(HR)$$
(11)

$$\Delta\Delta G_{solv}^* = \Delta G_{solv}^*(R^-) + \Delta G_{solv}^*(H^+) - \Delta G_{solv}^*(HR)$$
(11)

The value of $\Delta G_{solv}^{0}(H^{+})$ was under debate in the literature for some time. Nevertheless, the most reliable value of $\Delta G_{solv}^{0}(H^{+})$ is generally accepted as -265.9 kcal/mol.⁷ For a proton in the gas phase, the experimentally determined $\Delta G_{gas}^{0}(H^{+})$ of -6.28 kcal/mol was used in the calculation.⁸ The factor $\Delta G^{0\rightarrow*}$ accounting for the conversion between standard states of 1 atm and 1 mol/L was incorporated as RTln(24.46).

Compound	$H_2L \cdot \frac{1}{2}H_2O$	2a	2c	3
Empirical formula	$C_{10}H_{16}N_5O_{1.5}$	$C_{20}H_{32}Cl_2N_{10}NiO_3$	$C_{20}H_{30.5}Cl_2MnN_{10}O_{10.25}$	C ₂₀ H ₂₈ ClCoN ₁₀ O ₆
Formula weight	230.28	593.23	709.89	598.90
λ, Å	0.71073	0.7927	0.7927	0.8042
<i>Т</i> , К	120(2)	100(2)	100(2)	293(2)
Crystal size, mm	0.32×0.20×0.20	0.03×0.03×0.05	0.04×0.04×0.06	0.03×0.03×0.15
Crystal system	Monoclinic	Triclinic	Triclinic	Orthorhombic
Space group	P2/n	P -1	P -1	Pbca
<i>a</i> , Å	10.0278(4)	11.070(2)	12.890(3)	8.1014(16)
b, Å	10.8150(4)	11.180(2)	15.010(3)	22.215(4)
<i>c</i> , Å	11.2650(4)	12.880(3)	15.150(3)	28.766(6)
α, °	90	70.07(3)	94.90(3)	90
β , °	98.834(1)	65.63(3)	91.49(3)	90
γ, °	90	88.17(3)	96.56(3)	90
V, Å ³	1207.20(8)	1354.0(6)	2899.5(11)	5177.1(18)
Ζ	4	2	4	8
$D_{\text{calc}}, \text{g} \cdot \text{cm}^{-3}$	1.267	1.455	1.626	1.537
F(000)	492	592	1466	2480
μ , mm ⁻¹	0.090	1.287	0.966	1.158
$\theta_{\min}; \theta_{\max}, \circ$	31.064	2.2; 28.2	1.5; 31.0	1.6; 31.0
Index ranges	$\begin{array}{c} -14 < h < 14 \\ -15 < k < 15 \\ -16 < l < 16 \end{array}$	-12 < h < 13 -13 < k < 13 -14 < 1 < 15	-16 < h < 16 -18 < k < 19 -19 < l < 19	$\begin{array}{c} -9 < h < 10 \\ -28 < k < 28 \\ -36 < l < 36 \end{array}$
Reflections collected	15468	16940	28426	52698
Independent reflections, R_{int}	3873, 0.042	4703, 0.0268	13037, 0.043	5568, 0.0453
Reflections observed with $I > 2\sigma(I)$	2661	4282	11068	4836
Data / restraints / parameters	3873 / 0 / 214	4703 / 0 / 353	13037 / 6 / 852	5568 / 0 / 352

Table S7. Crystallographic data and details of the crystallographic experiment and refinement procedure.

R_1 ; w R_2 ($I > 2\sigma(I)$)	0.046; 0.122	0.0325;0.0821	0.0487; 0.1290	0.0578; 0.1300
R_1 ; w R_2 [all data]	0.077; 0.139	0.0363;0.0844	0.0573; 0.1359	0.0662; 0.1346
GOF on F^2	1.023	1.038	1.042	1.142

FigureS8. ¹H-NMR spectrum of complex 3 in DMSO

FigureS9. ¹H-NMR spectrum of complex **3** in DMSO with adding of D_2O

Figure S10. Cyclic voltammograms at GC electrode in acetonitrile solution containing 10 mM TBAP and ligand (panel b) Fe based complex (panel c) and Cobased complex (panel a).

References

1. J. Inczedy, Analitical applications of complex equilibria / J. Inczedy Budapest, 1976

2. M. M. Peixoto, G. F. Bauerfeldt, M. H. Herbst, M. S. Pereira and C. O. da Silva, Journal of Physical Chemistry A, 2015, 119, 5241-5249.

3. T. Baba, T. Matsui, K. Kamiya, M. Nakano and Y. Shigeta, *International Journal of Quantum Chemistry*, 2014, **114**, 1128-1134.

4. T. B. Lee and M. L. McKee, *Physical Chemistry Chemical Physics*, 2011, **13**, 10258-10269.

A. V. Marenich, W. D. Ding, C. J. Cramer and D. G. Truhlar, *Journal of Physical Chemistry Letters*, 2012, **3**, 1437-1442.

A. M. N. Silva, X. L. Kong and R. C. Hider, *Biometals*, 2009, **22**, 771-778.

- 5. C.P. Kelly, C.J. Cramer, D.G. Truhlar J. Phys. Chem. B, 2007, 111, 408-422.
- 6. M.D. Liptak, G.C. Shields J. Am. Chem. Soc., 2001, 123, 7314–7319.