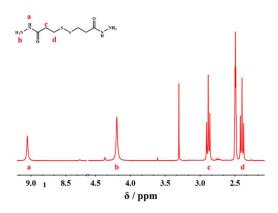
Electronic Supplementary Material

A tri-responsive and fast self-healing organogel with stretchability based on multiple dynamic covalent bonds

Shujing Ren^a, Huiqin Liang^b, Panpan Sun^a, Yanan Gao^{c*} and Liqiang Zheng^{a*}

^aKey Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China.

^bChina Research Institute of Daily Chemistry Co., Ltd, Taiyuan 030001, P. R. China.


^cKey Laboratory of Ministry of Education for Advanced Materials in Tropical Island

Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, P. R. China.

Experimental Section

Synthesis route of 3,3'-dithiobis (propionohydrazide) (DPH)

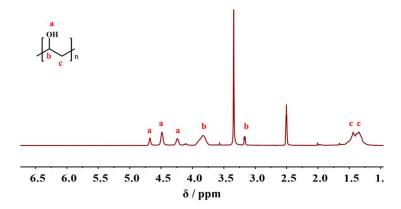

Scheme S1. The synthesis route for DPH.

Figure S1. ¹H NMR spectrum of DPH in DMSO-d6.

Figure S2. The ¹H NMR spectrum of FPBA DMSO-d6.

Figure S3. The ¹H NMR spectrum of PVA in DMSO-d6.

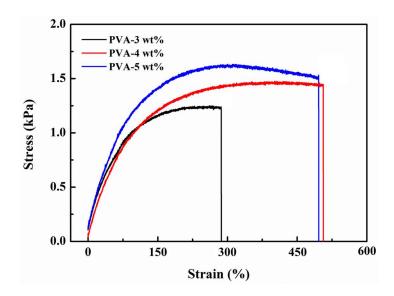
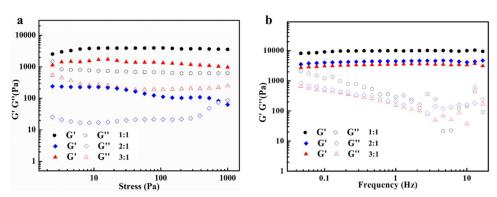



Figure S4. Tensile stress curves of $G_{P\text{-B-H}}$ made from different concentrations of PVA, 3 wt%, 4 wt% and 5wt%, and the molecular ratio of FPBA to DPH was 2:1.

Figure S5. Rheological curves of organogels prepared at the molecular ratio of FPBA : DPH is 1:1, 2:1 and 3:1.