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Supplementary figure
Fig. S1. (a, b) Stability tests of the various surfactant-stabilized oil-in-water emulsions
including crude-oil-in-water emulsion, after one month, the emulsions are still stable
without demulsification.
Fig. S2. The EDX spectrum of the TiO, coated meshes.
Fig. S3. High-resolution XPS Cls, Ols, P2p, Al2p and Ti2p narrow scans as a
functional electron binding energy.
Fig. S4 Pore size distribution and average pore size of as-prepared CFCMs-2300.
Fig. S5 Schematic diagrams on (a) IECP, (b) IACP of the AP binder and the
interaction forces between the AP binder and (c) nanoparticles or (d) substrates.
Fig. S6. The underwater kerosene CA of the AP coated mesh (a) and TiO, coated
mesh without AP (b).
Fig. S7. Digital photographs showing the implementing processes to demonstrate the
anti-fouling property of the TiO, coated mesh for the crude oil with high viscosity.
Fig. S8. The device for oil-in-water emulsion separation connected with a vacuum
pump.
Fig. S9. The unmodified stainless steel cannot separate surfactant-stabilized
oil-in-water emulsions.
Fig. S10. Optical microscope images and digital photographs of (a) hexane-in-water
emulsion, (b) heptane-in-water emulsion and (c) petroleum ether-in-water emulsion
before and after separation. Droplet size measurements of (d) hexane-in-water

emulsion, (e) heptane-in-water emulsion and (f) petroleum ether-in-water emulsion



before and after separation.
Fig. S11. The schematic diagram of sand impact test.
Fig. S12. Variation in the underwater kerosene CAs of the TiO, coated mesh as a

function of pH values.
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Fig. S1. (a, b) Stability tests of the various surfactant-stabilized oil-in-water emulsions
including crude-oil-in-water emulsion, after one month, the emulsions are still stable

without demulsification.
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Fig. S2. The EDX spectrum of the TiO, coated meshes.
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Fig. S3. High-resolution XPS Cls, Ols, P2p, Al2p and Ti2p narrow scans as a

functional electron binding energy.
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Fig. S4 Pore size distribution and average pore size of as-prepared CFCMs-2300.
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Fig. S5 Schematic diagrams on (a) IECP, (b) IACP of the AP binder and the

interaction forces between the AP binder and (c) nanoparticles or (d) substrates.

Fig. S6. The underwater kerosene CA of the AP coated mesh (a) and TiO, coated

mesh without AP (b).

Fig. S7. Digital photographs showing the implementing processes to demonstrate the

anti-fouling property of the TiO, coated mesh for the crude oil with high viscosity.
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Fig. S8. The device for oil-in-water emulsion separation connected with a vacuum

pump.

Fig. S9. The unmodified stainless steel cannot separate surfactant-stabilized

oil-in-water emulsions.
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Fig. S10. Optical microscope images and digital photographs of (a) hexane-in-water
emulsion, (b) heptane-in-water emulsion and (c) petroleum ether-in-water emulsion
before and after separation. Droplet size measurements of (d) hexane-in-water
emulsion, (e) heptane-in-water emulsion and (f) petroleum ether-in-water emulsion

before and after separation.
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Fig. S11. The schematic diagram of sand impact test.
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Fig. S12. Variation in the underwater crude oil CAs of the TiO, coated mesh as a

function of pH values.



