Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Nickel(II) and Nickel(0) Complexes as Precursors of Nickel Nanoparticles

for the Catalytic Hydrogenation of Benzonitrile

Alejandro A. Rodríguez, Jorge A. Garduño and Juventino J. García*

*juvent@unam.mx

Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510,

Mexico

Supporting Information

Table of contents
Synthesis of [(TEEDA)NiCl ₂] (1)
Synthesis of [(TMEDA)NiCl(o-tolyl)]
Synthesis of [(bpy)NiCl ₂]
Synthesis of [(phen)NiCl ₂]
Figure S1. ¹ H-NMR (400 MHz, CD ₂ Cl ₂) spectrum of complex [(TMEDA)NiCl(o-tolyl)]
(2)
Figure S2. TEM images of the Ni-Np's after hydrogenation process with precatalyst 2 and
distribution histogram generated from the micrographs
Figure S3. GC trace from the catalytic hydrogenation of benzonitrile with complex 1 under
optimized conditions
Figure S4. MS for Benzylamine (BA)
Figure S5. MS for <i>N</i> -benzylidenebenzylamine
Figure S6. MS for dibenzylamine
Figure S7. GC Trace for the hydrogenation of benzonitrile with complex 3 in EtOH at 100
°CS11
Figure S8. MS for <i>N</i> -benzylbenzimidamideS11
Figure S9. GC trace for the hydrogenation of benzonitrile with complex 4 in EtOH at 100
°C
Figure S10. MS for ethyl benzimidate
Figure S11. GC trace of the hydrogenation of benzonitrile with complex 5 under optimized
conditions
Figure S12. GC of a MeOH/THF(1:1) solution of benzylamine hydrochlorideS13

Figure S13	. ¹ H-NMR (400 MHz, D	$MSO-d_6$) sp	ectrum of benzyla	amine hydroch	loride
						S14
Figure S14	. MS for (4-	methoxyphei	nyl)methana	mine		S15
Figure S15	. MS for (<i>E</i>)	-N-(4-metho	xybenzyl)-1	-(4-methoxypher	ıyl)methanimin	le
						S15
Figure S16	. MS for (4-	(trifluoromet	hyl)phenyl)	methanamine		S16
Figure	S17.	MS	for	(<i>E</i>)- <i>N</i> -(4-(tri	fluoromethyl)b	enzyl)-1-(4-
(trifluorom	ethyl)pheny	l)methanimir	ne			S16
Figure S18	. MS for <i>p</i> -te	olylmethanar	nine			S17
Figure S19	. MS for (<i>E</i>)	-N-(4-methy	lbenzyl)-1-(<i>p</i> -tolyl)methanim	nine	S17
Figure S20	. MS for bis	(4-methylber	nzyl)amine			S18
Figure S21	. MS for (4-	fluorophenyl)methanami	ne		S19
Figure S22	. MS for (<i>E</i>)	-N-(4-fluoro	benzyl)-1-(4	l-fluorophenyl)m	ethanimine	S19
Figure S23	. MS for fur	an-2-ylmetha	namine			S20
Figure S24	. MS for (<i>E</i>)	-1-(furan-2-y	/l)-N-(furan-	-2-ylmethyl)meth	nanimine	S20
Figure S25	5. GC for th	ne hydrogena	ation of cyc	clohexylcarbonitr	ile with comp	lex 5 in the
presence of	f sub-stoichi	ometric amo	uts of PhCN	[S21
Figure S26	. MS for cyc	lohexylmeth	anamine			S21
Figure S27	. MS for (<i>E</i>)	-1-cyclohexy	/l-N-(cycloh	exylmethyl)meth	nanimine	S22
Figure S28	. MS for bis	(cyclohexyln	nethyl)amin	e		S22
Figure S29	. MS for (<i>E</i>)	-N-benzyl-1-	cyclohexylr	nethanimine		S23
Figure S30	. MS for <i>N</i> -l	penzyl-1-cyc	lohexylmeth	nanamine		
Table S1. H	Iydrogenatio	on of benzon	itrile in the p	presence of comp	olexes 3 and 4 in	n EtOH
						S6
Table S2.	Гemperature	dependent of	experiments	of the hydrogen	ation of benzo	nitrile in the
presence of	fcomplexes	2-4				S6
Table S3. N	Mercury dro	p test for the	catalytic hy	drogenation of b	enzonitrile wit	h complexes
1-5						S7
Table S4. (Optimization	of the react	ion conditio	ns in the hydroge	enation of benz	conitrile with
complex 5.						S8
References						S24

Synthesis of [(TEEDA)NiCl₂] (1)

The synthesis was carried out using a previously reported methodology with some modifications.¹ Inside the glovebox, a Schlenk flask equipped with a stirring bar was charged with $[Ni(COD)_2]$ (120 mg, 0.43 mmol), TEEDA (100 mg, 0.58 mmol) and chlorobenzene (0.4 mL, 4 mmol). The resulting mixture was stirred for 48 h at room temperature. After the reaction time, hexanes (5.0 mL) were added to the reaction mixture and the precipitation of a purple solid was observed, the mixture was stirred for 30 min. The resulting solid was filtered and washed with hexanes (3 x 2 mL). After this, the solid was dissolved in toluene and filtered. The filtrate was recovered, the solvent was evaporated, and the resulting solid was dried under high vacuum for 4 h. The complex was recovered as a purple solid in 47% yield (61.2 mg, 0.2 mmol) and characterized by single crystal XRD upon comparison with the reported lattice parameters.

Synthesis of [(TMEDA)NiCl(*o*-tolyl)] (2)

This synthesis was carried out using a previously reported methodology.² Inside the glovebox, a Schlenk flask equipped with a stirring bar was charged with $[Ni(COD)_2]$ (100 mg, 0.36 mmol), TMEDA (51.5 mg, 0.44 mmol) and *o*-chlorotoluene (2.0 mL, 17.1 mmol). The resulting mixture was stirred for 66 h at room temperature. After the reaction time, the orange solid formed was suspended in hexanes (6.0 mL) and stirred for 30 min. The liquid phase was decanted, and the resulting solid was washed with hexanes (6 x 2.0 mL) and dried under high vacuum for 4 h. The complex was obtained as an orange powder in 81% yield (88.7 mg, 0.29 mmol) and characterized by ¹H-NMR (300 MHz, CD₂Cl₂): 7.38 (br, 1H, Ar *CH*), 6.68-6.58 (m, 3 H, Ar *CH*), 3.43 (s, 3H, Ar *CH₃*), 2.64-2.41 (3 br s, 11 H, N-*CH₃*, N-*CH₂*), 2.18 (br, 2H, N-*CH₂*), 1.83 (br, 3H, N-*CH₃*).

Synthesis of [(bpy)NiCl₂] (3)

This synthesis was carried out using a previously reported methodology.³ Inside the glovebox, a Schlenk Flask equipped with a stirring bar was charged with NiCl₂•H₂O (152.0 mg, 0.64 mmol), 2,2'-bipyridine (100 mg, 0.64 mmol) and 4.0 mL of EtOH. The resulting solution was stirred for 6 h at room temperature. After the reaction time, the pale green solid formed was filtered, washed with anhydrous ethanol (4 x 3.0 mL) and dried under high vacuum. The complex was obtained as a pale green powder in 23% yield (42.8 mg, 0.15 mmol). Elemental Analysis Calculated for C₁₀H₈Cl₂N₂Ni: C, 42.03; H, 2.82; N, 9.80. Found: C, 42.04; H, 2.95; N, 9.58.

Synthesis of [(phen)NiCl₂] (4)

This synthesis was carried out using a previously reported methodology.⁴ Inside the glovebox, a Schlenk flask was charged with NiCl₂ (77.7 mg, 0.6 mmol), 1,10-phenantroline (108.1 mg, 0.6 mmol) and EtOH (5.0 mL). The resulting mixture was stirred for 15 h at room temperature. After the reaction time, the solvent was evaporated and the resulting pale green solid was suspended in anhydrous THF (5.0 mL), filtered and dried under high vacuum. The complex was obtained as a pale green powder in a 83% yield (155 mg, 0.72 mmol). Elemental Analysis calculated for $C_{12}H_8Cl_2N_2Ni$: C, 46.52; H, 2.60; N, 9.04. Found: C, 46.98; H, 2.67; N, 9.03.

Figure S1. ¹H-NMR (400 MHz, CD₂Cl₂) spectrum of complex [(TMEDA)NiCl(*o*-tolyl)]

(2)

Table S1. Hydrogenation of benzonitrile in the presence of complexes 3 and 4 in

EtOH^a

Ph-	$-\equiv N \qquad \frac{[Ni] (1)}{H_2 (12)}$	mol%) 20 psi) Ph ∕ N ∕	Ph + Ph O	∧ + Ph	H `N Ph H
	BN 100 °C	Dh BBA D, 72 h	BE	В	BD
Entry	Complex	Conversion(%) ^b	BBA (%)	BE(%)	BBD(%)
1	3	61	54	n.d.	7
2	4	18	16	2	n.d.

^aReaction conditions: **BN** (1.55 mmol), **[Ni]** (0.0155 mmol), EtOH (5.0 mL), n.d. = no detected. ^bDetermined by GC-MS.

Table S2. Temperature dependent experiments of the hydrogenation of benzonitrile in
the presence of complexes 2-4^a

$Ph \longrightarrow N \xrightarrow{[Ni] (1mol\%)} Ph \xrightarrow{NH_2} + Ph \xrightarrow{N} Ph + Ph \xrightarrow{N} Ph$										
E	BN T⊢ 72	lF h	BA	BBA	DBA	4				
Entrada	Complex	T (°C)	Conv (%) ^b	BA (%)	BBA (%)	DBA (%)				
1	N. CI	100	82	18	59	5				
2		120	82	21	56	5				
3	\land	140	>99	39	29	31				
4		160	>99	42	19	38				
5		100	6	n.d.	6	n.d.				
6	N, CI	120	30	3	25	2				
7		140	95	14	68	13				
8		160	98	26	49	23				
9		100	20	1	19	n.d.				
10	N, CI	120	43	8	33	2				
11	N ^{CI}	140	46	2	36	8				
12		160	87	2	73	12				

^aReaction conditions: **BN** (1.55 mmol), **[Ni]** (0.0155 mmol), THF (5.0 mL), n.d. = no detected. ^bDetermined by GC-MS.

	Ph—≡N	∫ [Ni] (1mol%) Hg⁰	Ph∕∕N⊦	l ₂ + Ph N	`Ph + P	h <mark>́N</mark> ́I	Ph
BN		H₂ (120 psi) THF	BA	BBA		DBA	
Entry	Complex	Temperature (°C)	Time (h)	Conversión(%)	BA (%)	BBA(%)	DBA(%)
1	1	100	72	>1	n.d.	n.d.	n.d.
2	2	160	72	43	n.d.	37	6
3	3	160	72	<1	n.d.	n.d.	n.d.
4	4	160	72	<1	n.d.	n.d.	n.d.
5	5	80	24	17	14	3	n.d.

 Table S3. Mercury drop test for the catalytic hydrogenation of benzonitrile with complexes 2-4^a.

^aReaction conditions: **BN** (1.55 mmol), **[Ni]** (0.0155 mmol), THF (5.0 mL), 1 Hg⁰ drop, n.d. = no detected. ^bDetermined by GC-MS.

Figure S2. TEM images of the Ni-Np's after hydrogenation process with precatalyst 2 and distribution histogram generated from the micrographs

with complex 5^{*a*}

$Ph \longrightarrow N \xrightarrow{5 (x \text{ mol } \%)} Ph \longrightarrow NH_2 + Ph \xrightarrow{N} Ph$										
	BN THF BA BBA 80 ℃									
Entry	H ₂ (psi)	Time(h)	5 (mol%)	Conversion(%) ^b	BA(%)	BBA(%)				
1	60	24	1	31	25	6				
2	120	12	1	75	66	9				
3	120	24	0.5	57	31	26				
4 ^c	120	24	1	85	51	34				

^aReaction conditions: **BN** (1.55 mmol), THF (5.0 mL). ^bDetermined by GC-MS.^c3.0 mL of THF were used.

100 °C

Figure S8. MS for N-benzylbenzimidamide

Abundance

100 °C

Figure S12. GC of a MeOH/THF(1:1) solution of benzylamine hydrochloride

S13

Figure S13. ¹H-NMR (400 MHz, DMSO-*d₆*) spectrum of benzylamine hydrochloride

Abundance

Figure S14. MS for (4-methoxyphenyl)methanamine

Figure S15. MS for (E)-N-(4-methoxybenzyl)-1-(4-methoxyphenyl)methanimine

S15

Figure S17. MS for (*E*)-*N*-(4-(trifluoromethyl)benzyl)-1-(4-

(trifluorometh	vľ)n	hen	vľ)met	han	im	ine
•	u muoi ometi	<u>у н</u>	P	nvn.	y ∎,	June			me

Figure S19. MS for (E)-N-(4-methylbenzyl)-1-(p-tolyl)methanimine

Figure S20. MS for bis(4-methylbenzyl)amine

Figure S21. MS for (4-fluorophenyl)methanamine

Figure S22. MS for (*E*)-*N*-(4-fluorobenzyl)-1-(4-fluorophenyl)methanimine

Abundance

Figure S27. MS for (*E*)-1-cyclohexyl-*N*-(cyclohexylmethyl)methanimine

Figure S28. MS for bis(cyclohexylmethyl)amine

Figure S29. MS for (E)-N-benzyl-1-cyclohexylmethanimine

Figure S30. MS for *N*-benzyl-1-cyclohexylmethanamine

References

[1] W. J, Marshall and V. V. Grushin, V. V. Activation of chlorobenzene with Ni(0) *N*,*N*-chelates- A remarkable profund effect of a minuscule change in ligand structure, *Can. J. Chem.*, 2005, **83**, 640-645.

[2] J. Magano and S. Monfette, Development of an Air-Stable, Broadly Applicable Nickel Source for Nickel-Catalyzed Cross-Coupling, *ACS Catal.*, 2015, **5**, 3120-3123.

[3] K. Singh, L. M. Kabadwal, S. Bera, A. Alanthadka and D. Banerjee, Nickel-Catalyzed Synthesis of *N*-Substituted Pyrroles Using Diols with Aryl- and Alkylamines, *J. Org. Chem.*, 2018, **83**, 15406-15414

[4] S. Zheng, D. N. Primer and G. A. Molander, Nickel/Photoredox-Catalyzed Amidation via Alkylsilicates and Isocyanates, *ACS Catal.*, 2017, **7**, 7957-7961.