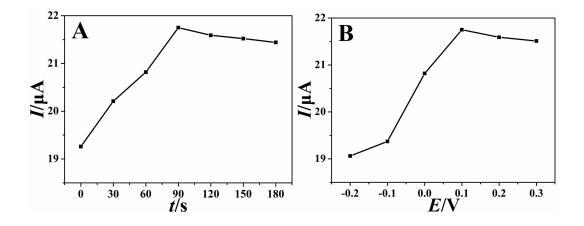
Electronic Supplementary Information

Electrochemical sensor for sensitive detection of luteolin based on multi-walled carbon nanotubes/poly (3,4ethylenedioxythiophene)-gold nanocomposites

Wenxue Cheng,^a Peiyi Zeng,^a Cenhuai Ma,^a Haoming Peng,^a Jinsha Yang,^a jianzhi Huang,^b Min Zhang^{*a} and Faliang Cheng^{*a}

a: Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, People's Republic of China.

b: School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.


Tel: +86 769 22862186

*Corresponding authors.

Prof. Faliang Cheng, E-mail address: <u>chengfl@dgut.edu.cn</u>

Prof.Min Zhang, E-mail address: mindear@dgut.edu.cn

New Journal of Chemistry

Fig. S1 The effects of accumulation time (A) and potential (B) for the detection of 5 μmol dm⁻³ luteolin in BR buffer solution at the MWCNTs/PEDT-Au/GCE.

Table.S1	Effects of possible interferences on the oxidation peak current signal of 5
µmol dm-3	luteolin at the MWCNTs/PEDT-Au/GCE in BR buffer solution (pH=3.0).

Interference	Concentration (µmol dm ⁻³)	Current signal change
	(µmor um)	(%)
CaCl ₂	500	-3.02
K ₃ PO ₄	500	1.39
Na ₂ CO ₃	500	1.76
MgSO ₄	500	-2.49
NH ₄ F	500	3.40
$Zn(Ac)_2$	500	1.98
glucose	50	-2.08
maltose	50	-1.23
sucrose	50	3.76
ascorbic acid	50	-2.84
dopamine	50	3.83
rutin	50	5.63
myricitrin	50	3.85
diosmetin	50	-2.63
quercetin	50	4.05
curcumin	50	2.59

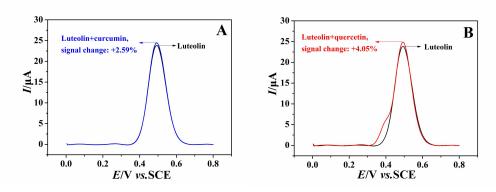
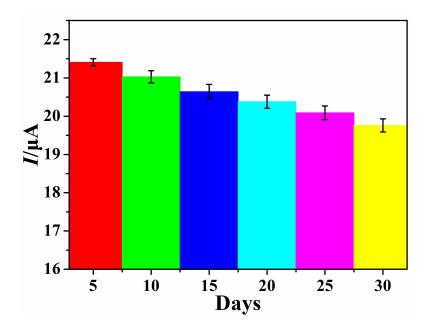
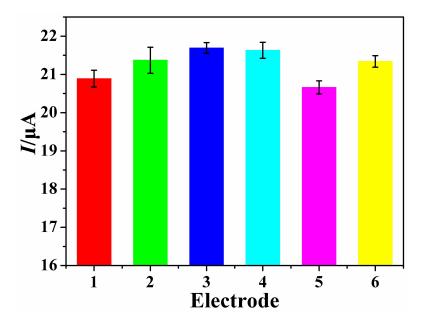




Fig. S2 The effects of curcumin (A) and quercetin (B) for the detection of 5 μmol dm⁻³ luteolin in BR buffer solution at the MWCNTs/PEDT-Au/GCE.

Fig. S3 The bar diagram of current responses to 5 µmol dm⁻³ luteolin recorded on MWCNTs/PEDT-Au/GCE in BR buffer solution (pH=3.0) after storing during different time periods.

Fig. S4 SWV responds of the six identically fabricated MWCNTs/PEDT-Au/GCE in BR buffer solution (pH=3.0) containing 5 µmol dm⁻³ luteolin. The error bars represent standard deviations of three measurements.