Supporting Information for;

Regioisomer Effects of Dibenzofuran-based Bipolar Host Materials on Yellow Phosphorescent OLED Device Performance

Nam Hee Cho ${ }^{1}$, Jun Yeob Lee ${ }^{2}$, Oh Young Kim ${ }^{1}$, and Seok-Ho Hwang, ${ }^{1, *}$
${ }^{1}$ Department of Polymer Science \& Engineering, Materials Chemistry \& Engineering Laboratory, Dankook University, Yongin, Gyeonggi 16890, Korea; ${ }^{2}$ School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi 16419, Korea

*To whom the correspondence should be addressed. E-mail: bach@dankook.ac.kr

Figure S1. DSC thermograms of CF-1-BzF, CF-2-BzF, CF-3-BzF, and CF-4-BzF under a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$.

Figure S2. TGA thermograms for CF-1-BzF, CF-2-BzF, CF-3-BzF, and CF-4-BzF under a heating rate of $20^{\circ} \mathrm{C} / \mathrm{min}$.

Figure S3. Current efficiency-luminance curves of [PO-01]-based devices with CF-1-BzF, CF-2BzF, CF-3-BzF, and CF-4-BzF, respectively.

Table S1. Optoelectronic data of synthesized host materials.

| Host
 Compound | $\lambda_{\text {max, abs }}(\mathrm{nm})$ | $\lambda_{\text {emission }}$
 (nm) | E_{T}
 (eV) | $\mathrm{HOMO}^{\mathrm{a}}$
 (eV) | $\mathrm{LUMO}^{\mathrm{a}}$
 (eV) | $E_{g}{ }^{\mathrm{b}}$
 (eV) | $E_{g}{ }^{\mathrm{c}}$
 (eV) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CF-1-BzF | 321 | 414 | 2.27 | -5.9 | -2.5 | 3.3 | 3.4 |
| CF-2-BzF | 325 | 418 | 2.41 | -5.8 | -2.4 | 3.3 | 3.4 |
| CF-3-BzF | 337 | 418 | 2.30 | -5.8 | -1.9 | 3.3 | 3.9 |
| CF-4-BzF | 324 | 416 | 2.37 | -5.8 | -1.8 | 3.5 | 4.0 |

a: HOMO and LUMO were calculated from the onset value of the oxidation and reduction potentials, respectively.
b: The band gap energies were estimated from the optical absorption edges of UV-Vis absorption spectra.
c: The band gap energies were estimated from CV.

Table S2. Electroluminescence characteristics of the [PO-01]-based yellow PhOLEDs.

Host Compound	Doping Conc. (\%)	$\begin{gathered} V_{\text {on }}{ }^{a}(\mathrm{~V}) \\ \text { at } 1 \mathrm{~cd} / \mathrm{m}^{2} \end{gathered}$	CE (cd/A)		PE (lm/W)		EQE (\%)		CIE (x; y)
			1000 cd	Max.	1000 cd	Max.	1000 cd	Max.	
CF-1-BzF	5	6.8	35.89	74.56	16.88	52.04	11.35	23.71	$(0.49$; 0.51)
	10	6.5	45.37	72.68	21.84	53.6	14.85	23.98	$(0.50 ; 0.50)$
CF-2-BzF	5	6.5	74.11	76.59	35.99	53.13	23.73	24.54	(0.50; 0.50)
	10	6.1	71.60	77.12	36.70	59.78	23.49	25.27	(0.50; 0.49)
CF-3-BzF	5	7.2	69.70	73.48	30.55	40.24	22.91	24.16	$(0.50$; 0.49)
	10	6.6	65.09	70.87	30.90	49.75	21.93	23.90	(0.51; 0.49)
CF-4-BzF	5	6.5	70.15	72.79	34.01	44.55	22.33	23.19	(0.49 ; 050)
	10	6.1	65.78	72.94	33.88	59.30	21.45	23.82	(0.50; 0.50)

a: turn-on voltage

