Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Photophysical and Electrochemical Properties of Newly Synthesized

Thioxathone-Viologen Binary Derivatives and Their Photo-/Electrochromic

Displays in Ionic Liquid and Polymer Gels

Dong-Mei Ma, Jing Wang, Hao Guo,* Dong-Jin Qian*

Figure S1. FTIR spectra of (a) TXBr, (b) TXVBPy, (c) TXVMe and (d) TX₂V.

Figure S2. Fluorescent emission spectra for the mixtures of TXBr with octylviologen (C₈V) at different molar ratios.

Figure S3. Fluorescent emission spectra for (A) TXVBPy and (B) TXVMe in different solvents.

Figure S4. (A) CVs of GC electrode in the 2 × 10⁻⁵ mol/L TXVBPy, 0.05 mol/L KCl electrolyte solutions at the scan rates from 100 to 600 mV/s. (B) Plots of current intensity obtained from CVs to the scan rates (\bullet) and the root of the scan rates (\star).

Figure S5. (A) CVs of GC electrode in the 2×10^{-5} mol/L TXVMe, 0.05 mol/L KCl electrolyte solutions at the scan rates from 100 to 600 mV/s. (B) Plots of current intensity obtained from CVs to the scan rates (\bullet) and the root of the scan rates (\star).

Figure S6. CV of ITO electrode covered by the casting film of TXBr in the 0.05 mol/L KCl electrolyte solution.

Figure S7. Absorption spectra for the aqueous solutions of (A) TXVBPy and (B) TXVMe before (---) and after (--) radiation. Inserted: Photos of the TX-VIO solutions before and after the radiation.

Figure S8. Chronoamperometry curve for the ECD of TXVMe between 0 and -2.4 V.

Figure S9. (A) Transmittance changes at 540 nm of TXVBPy ECD in the ionic liquids with a bias between 0 and -2.4 V. (B) Chronoamperometry curve of TXVBPy ECD between 0 and -2.4 V.

Figure S10. (A) Transmittance changes at 540 nm of TX_2V ECD in the ionic liquids with a bias between 0 and -2.4 V. (B) Chronoamperometry curve of TX_2V ECD between 0 and -2.4 V.

Figure S11. Photos of flexible device of TX_2V in the polymeric gels.

Compounds	Cycling times ^a	ΔOD^b	Q (mC/cm²)c	η (cm²/C) ^d	Decay (%) ^e
		540 nm		540 nm	540 nm
ТХВРу	1	0.21	8.63	24	0
	100	0.19	11.44	17	41
TXVMe	1	0.17	9.87	17	0
	100	0.17	9.87	17	0
TX ₂ V	1	0.17	10.34	16	0
	20	0.16	11.44	14	14

Table S1. Coloration Efficiency (η) and Decay of CE (%) for the TX-VIO ECDs.

^a Switching between 0 and -2.4 V for EC devices

^b Absorbance change at 540 nm. Δ OD = log (T_b/T_c)

^c Ejected charge, determined from the in situ experiments

^d Coloration efficiency, $\eta = \Delta OD/Q$

^e Decay of CE after various switching scans