Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Triptycene Walled Glycoluril Trimer: Synthesis and Recognition Properties

Sandra Zebaze Ndendjio,^a Wenjin Liu,^{a,b} Nicolas Yvanez,^{a,c} Zhihui Meng,^{b,*} Peter Y. Zavalij,^a and Lyle Isaacs^{a,*}

^a Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA. E-mail: <u>lisaacs@umd.edu</u>
^b School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, P. R. China
^c École Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, F75231 Paris cedex 05, France

Table of Contents	Pages
General experimental	S2
¹ H and ¹³ C NMR recorded for 1	S3 - S5
Dilution experiment performed for 1	S6 - S7
¹ H NMR stack plots for 1 •guest complexes	S8 - S31
ITC binding studies for 1•guest complexes	S32 - S55
ESI-MS spectrum recorded for 1	S56

General experimental

Starting materials were purchased from commercial suppliers and used without further purification or were prepared by literature procedures. Melting points were measured on a Meltemp apparatus in open capillary tubes and are uncorrected. IR spectra were recorded on a JASCO FT/IR 4100 spectrometer and are reported in cm⁻¹. NMR spectra were measured on Bruker spectrometers operating at 400 or 600 MHz for ¹H and 100 or 125 MHz for ¹³C using D₂O, or DMSO-d₆ as solvents. Chemical shifts (δ) are referenced relative to the residual resonances for HOD (4.80 ppm) and DMSO-d₆ (2.50 ppm for ¹H, 39.51 ppm for ¹³C). Mass spectrometry was performed using a JEOL AccuTOF electrospray instrument (ESI). ITC data was collected on a Malvern Microcal PEAQ-ITC instrument and analyzed using the software provided by the vendor.

Figure S1. ¹H NMR spectrum (D₂O, 20 mM sodium phosphate, pD 7.4, 600 MHz, RT) recorded for **1**.

Figure S2. ¹H NMR spectrum (DMSO-*d*₆, 600 MHz, RT) recorded for 1.

Figure S3. ¹³C NMR spectrum (D₂O, 600 MHz, RT, 1,4-dioxane as internal reference) recorded for **1**.

¹H NMR Dilution Experiments Performed for host 1

Self-association Binding Model implemented in ScientistTM // Micromath Scientist Model File // self-association model for NMR IndVars: concTot DepVars: Deltaobs Params: K_a, Deltasat, Deltazero K_a = concBound/(concFree*concFree) concTot=concFree + concBound/2 Deltaobs = Deltazero + (Deltasat - Deltazero) * (1/2*concBound/concTot) //Constraints $0 < K_a$ 0 < concFree < concTot 0 < concFree < concTot****

Figure S4. ¹H NMR spectra recorded (D₂O, 20 mM sodium phosphate, pD 7.40, 600 MHz, RT) for the dilution of host 1 (3 - 0.05 mM). Host 1 weakly self-associates in water ($K_s = 480 \pm 81 M^{-1}$).

Figure S5. ¹H NMR spectra recorded (D₂O, 20 mM sodium phosphate, pD 7.40, 400 MHz, RT) for: a) 4 (5 mM), b) a mixture of 1 (125 μ M) and 4 (250 μ M), c) a mixture of 1 (125 μ M) and 4 (125 μ M), d) 1 (250 μ M).

Figure S6. ¹H NMR spectra recorded (D₂O, 20 mM sodium phosphate, pD 7.40, 600 MHz, RT) for: a) **5** (5 mM), b) a mixture of **1** (250 μ M) and **5** (500 μ M), c) a mixture of **1** (250 μ M) and **5** (250 μ M), d) **1** (250 μ M).

Figure S7. ¹H NMR spectra recorded (D₂O, 20 mM sodium phosphate, pD 7.40, 600 MHz, RT) for: a) **6** (5 mM), b) a mixture of **1** (250 μ M) and **6** (500 μ M), c) a mixture of **1** (250 μ M) and **6** (250 μ M), d) **1** (250 μ M).

Figure S8. ¹H NMR spectra recorded (D₂O, 20 mM sodium phosphate, pD 7.40, 600 MHz, RT) for: a) **6DQ•2Br**⁻ (6 mM), b) a mixture of **1** (250 μ M) and **6DQ•2Br**⁻ (500 μ M), c) a mixture of **1** (250 μ M) and **6DQ•2Br**⁻ (250 μ M), d) **1** (250 μ M).

Figure S9. ¹H NMR spectra recorded (D₂O, 20 mM sodium phosphate, pD 7.40, 400 MHz, RT) for: a) $6Q \cdot Br^-$ (4 mM), b) a mixture of 1 (125 μ M) and $6Q \cdot Br^-$ (250 μ M), c) a mixture of 1 (125 μ M) and $6Q \cdot Br^-$ (125 μ M), d) 1 (250 μ M).

Figure S10. ¹H NMR spectra recorded (D₂O, 20 mM sodium phosphate, pD 7.40, 600 MHz, RT) for: a) 7 (2 mM), b) a mixture of 1 (125 μ M) and 7 (250 μ M), c) a mixture of 1 (125 μ M) and 7 (125 μ M), d) 1 (250 μ M).

Figure S11. ¹H NMR spectra recorded (D₂O, 20 mM sodium phosphate, pD 7.40, 600 MHz, RT) for: a) **9** (2 mM), b) a mixture of **1** (125 μ M) and **9** (250 μ M), c) a mixture of **1** (125 μ M) and **9** (125 μ M), d) **1** (250 μ M).

Figure S12. ¹H NMR spectra recorded (D₂O, 20 mM sodium phosphate, pD 7.40, 600 MHz, RT) for: a) **10** (2 mM), b) a mixture of **1** (125 μ M) and **10** (250 μ M), c) a mixture of **1** (125 μ M) and **10** (125 μ M), d) **1** (250 μ M).

Figure S13. ¹H NMR spectra recorded (D₂O, 20 mM sodium phosphate, pD 7.40, 600 MHz, RT) for: a) **11** (5 mM), b) a mixture of **1** (250 μ M) and **11** (500 μ M), c) a mixture of **1** (250 μ M) and **11** (250 μ M), d) **1** (250 μ M).

Figure S14. ¹H NMR spectra recorded (D_2O , 20 mM sodium phosphate, pD 7.40, 400 MHz, RT) for: a) **12** (2 mM), b) a mixture of **1** (125 μ M) and **12** (250 μ M), c) a mixture of **1** (125 μ M) and **12** (125 μ M), d) **1** (250 μ M).

Figure S15. ¹H NMR spectra recorded (D_2O , 20 mM sodium phosphate, pD 7.40, 600 MHz, RT) for: a) **13** (2 mM), b) a mixture of **1** (125 μ M) and **13** (250 μ M), c) a mixture of **1** (125 μ M) and **13** (125 μ M), d) **1** (250 μ M).

Figure S16. ¹H NMR spectra recorded (D_2O , 20 mM sodium phosphate, pD 7.40, 600 MHz, RT) for: a) **14** (4 mM), b) a mixture of **1** (125 μ M) and **14** (250 μ M), c) a mixture of **1** (125 μ M) and **14** (125 μ M), d) **1** (250 μ M).

Figure S17. ¹H NMR spectra recorded (D₂O, 20 mM sodium phosphate, pD 7.40, 600 MHz, RT) for: a) **15** (4 mM), b) a mixture of **1** (250 μ M) and **15** (500 μ M), c) a mixture of **1** (250 μ M) and **15** (250 μ M), d) **1** (250 μ M).

Figure S18. ¹H NMR spectra recorded (D₂O, 20 mM sodium phosphate, pD 7.40, 600 MHz, RT) for: a) **16** (4 mM), b) a mixture of **1** (250 μ M) and **16** (500 μ M), c) a mixture of **1** (250 μ M) and **16** (250 μ M), d) **1** (250 μ M).

Figure S19. ¹H NMR spectra recorded (D₂O, 20 mM sodium phosphate, pD 7.40, 600 MHz, RT) for: a) **17** (2 mM), b) a mixture of **1** (250 μ M) and **17** (500 μ M), c) a mixture of **1** (250 μ M) and **17** (250 μ M), d) **1** (250 μ M).

Figure S20. ¹H NMR spectra recorded (D₂O, 20 mM sodium phosphate, pD 7.40, 600 MHz, RT) for: a) **18** (1 mM), b) a mixture of **1** (125 μ M) and **18** (250 μ M), c) a mixture of **1** (125 μ M) and **18** (125 μ M), d) **1** (250 μ M).

Figure S21. ¹H NMR spectra recorded (D₂O, 20 mM sodium phosphate, pD 7.40, 600 MHz, RT) for: a) **19** (4 mM), b) a mixture of **1** (250 μ M) and **19** (500 μ M), c) a mixture of **1** (250 μ M) and **19** (250 μ M), d) **1** (250 μ M).

Figure S22. ¹H NMR spectra recorded (D₂O, 20 mM sodium phosphate, pD 7.40, 600 MHz, RT) for: a) **20** (250 μ M), b) a mixture of **1** (125 μ M) and **20** (250 μ M), c) a mixture of **1** (125 μ M) and **20** (125 μ M), d) **1** (250 μ M).

Figure S23. ¹H NMR spectra recorded (D₂O, 20 mM sodium phosphate, pD 7.40, 600 MHz, RT) for: a) **21** (1 mM), b) a mixture of **1** (125 μ M) and **21** (250 μ M), c) a mixture of **1** (125 μ M) and **21** (125 μ M), d) **1** (250 μ M).

Figure S24. ¹H NMR spectra recorded (D₂O, 20 mM sodium phosphate, pD 7.40, 600 MHz, RT) for: a) **22** (2 mM), b) a mixture of **1** (125 μ M) and **22** (250 μ M), c) a mixture of **1** (125 μ M) and **22** (125 μ M), d) **1** (250 μ M).

Figure S25. ¹H NMR spectra recorded (D₂O, 20 mM sodium phosphate, pD 7.40, 600 MHz, RT) for: a) **23** (250 μ M), b) a mixture of **1** (125 μ M) and **23** (250 μ M), c) a mixture of **1** (125 μ M) and **23** (125 μ M), d) **1** (250 μ M).

Figure S26. ¹H NMR spectra recorded (D₂O, 20 mM sodium phosphate, pD 7.40, 400 MHz, RT) for: a) **24** (250 μ M), b) a mixture of **1** (125 μ M) and **24** (250 μ M), c) a mixture of **1** (125 μ M) and **24** (125 μ M), d) **1** (250 μ M).

Figure S27. ¹H NMR spectra recorded (D₂O, 20 mM sodium phosphate, pD 7.40, 600 MHz, RT) for: a) **25** (1 mM), b) a mixture of **1** (125 μ M) and **25** (250 μ M), c) a mixture of **1** (125 μ M) and **25** (125 μ M), d) **1** (250 μ M).

Figure S28. ¹H NMR spectra recorded (D₂O, 20 mM sodium phosphate, pD 7.40, 600 MHz, RT) for: a) **26** (250 mM), b) a mixture of **1** (62.5 μ M) and **26** (125 μ M), c) a mixture of **1** (125 μ M) and **26** (125 μ M), d) **1** (250 μ M).

Isotherm of guests (4-26) with host 1

Figure S29. Isothermal Titration Calorimetry (ITC) curve obtained when a solution of **1** (100 μ M) in the cell was titrated with **4** (1.00 mM) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 2.92 × 10⁴ M⁻¹ and Δ H = -6.03 ± 0.260 kcal•mol⁻¹

Figure S30. Isothermal Titration Calorimetry (ITC) curve obtained through competition binding studies. A solution of **1** (100 μ M) and **19** (500 μ M) in the cell was titrated with **6** (1.00 mM) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 2.30 × 10⁷ M⁻¹ and H = -10.8 ± 0.044 kcal•mol⁻¹.

Figure S31. Isothermal Titration Calorimetry (ITC) curve obtained through competition binding studies. A solution of **1** (100 μ M) and **19** (500 μ M) in the cell was titrated with **6DQ** (1.00 mM) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 5.00 × 10⁷ M⁻¹ and Δ H = -12.7 ± 0.028 kcal•mol⁻¹

Figure S32. Isothermal Titration Calorimetry (ITC) curve obtained when a solution of **1** (100 μ M) in the cell was titrated with **6Q** (1.00 mM) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 1.20×10^6 M⁻¹ and Δ H = -8.54 ± 0.027 kcal•mol⁻¹.

Figure S33. Isothermal Titration Calorimetry (ITC) curve obtained through competition binding studies. A solution of **1** (100 μ M) and **19** (500 μ M) in the cell was titrated with **7** (1.00 mM) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 7.24 × 10⁷ M⁻¹ and Δ H = -10.1 ± 0.036 kcal•mol⁻¹.

Figure S34. Isothermal Titration Calorimetry (ITC) curve obtained through competition binding studies. A solution of **1** (100 μ M) and **5** (500 μ M) in the cell was titrated with **8** (1.00 mM) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 1.41 × 10⁸ M⁻¹ and Δ H = -11.5 ± 0.094 kcal•mol⁻¹.

Figure S35. Isothermal Titration Calorimetry (ITC) curve obtained through competition binding studies. A solution of **1** (100 μ M) and **5** (500 μ M) in the cell was titrated with **9** (1.00 mM) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 2.42 × 10⁸ M⁻¹ and Δ H = -11.4 ± 0.062 kcal•mol⁻¹.

Figure S36. Isothermal Titration Calorimetry (ITC) curve obtained through competition binding studies. A solution of **1** (100 μ M) and **5** (200 μ M) in the cell was titrated with **10** (1.00 mM) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 2.81 × 10⁸ M⁻¹ and Δ H = -11.3 ± 0.068 kcal•mol⁻¹.

Figure S37. Isothermal Titration Calorimetry (ITC) curve obtained when a solution of **1** (100 μ M) in the cell was titrated with **11** (1.00 mM) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 3.57×10^5 M⁻¹ and Δ H = -4.83 ± 0.036 kcal•mol⁻¹.

Figure S38. Isothermal Titration Calorimetry (ITC) curve obtained through competition binding studies. A solution of **1** (100 μ M) and **5** (500 μ M) in the cell was titrated with **12** (1.00 mM) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 4.55 × 10⁸ M⁻¹ and Δ H = -10.4 ± 0.064 kcal•mol⁻¹.

Figure S39. Isothermal Titration Calorimetry (ITC) curve obtained when a solution of **1** (10.0 μ M) in the cell was titrated with **13** (100 μ M) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 1.13 × 10⁷ M⁻¹ and Δ H = -10.1 ± 0.119 kcal•mol⁻¹.

Figure S40. Isothermal Titration Calorimetry (ITC) curve obtained when a solution of **1** (20.0 μ M) in the cell was titrated with **14** (200 μ M) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 4.08 × 10⁶ M⁻¹ and Δ H = -7.41 ± 0.084 kcal•mol⁻¹.

Figure S41. Isothermal Titration Calorimetry (ITC) curve obtained when a solution of **1** (100 μ M) in the cell was titrated with **15** (1.00 mM) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 1.11 × 10⁶ M⁻¹ and Δ H =-5.88 ± 0.049 kcal•mol⁻¹.

Figure S42. Isothermal Titration Calorimetry (ITC) curve obtained through competition binding studies. A solution of **1** (100 μ M) and **19** (500 μ M) in the cell was titrated with **16** (1.00 mM) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 8.77 × 10⁶ M⁻¹ and Δ H = -10.5 ± 0.044 kcal•mol⁻¹.

Figure S43. Isothermal Titration Calorimetry (ITC) curve obtained through competition binding studies. A solution of **1** (100 μ M) and **19** (500 μ M) in the cell was titrated with **17** (1.00 mM) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 5.81 × 10⁷ M⁻¹ and Δ H = -12.4 ± 0.045 kcal•mol⁻¹.

Figure S44. Isothermal Titration Calorimetry (ITC) curve obtained through competition binding studies. A solution of **1** (100 μ M) and **5** (500 μ M) in the cell was titrated with **18** (1.00 mM) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 3.57 × 10⁸ M⁻¹ and Δ H = -13.7 ± 0.039 kcal•mol⁻¹.

Figure S45. Isothermal Titration Calorimetry (ITC) curve obtained when a solution of **1** (100 μ M) in the cell was titrated with **19** (1.00 mM) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 5.95 × 10⁴ M⁻¹ and Δ H = -6.61 ± 0.088 kcal•mol⁻¹.

Figure S46. Isothermal Titration Calorimetry (ITC) curve obtained through competition binding studies. A solution of **1** (100 μ M) and **19** (500 μ M) in the cell was titrated with **20** (1.00 mM) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 1.32×10^7 M⁻¹ and Δ H = -14.7 ± 0.036 kcal•mol⁻¹.

Figure S47. Isothermal Titration Calorimetry (ITC) curve obtained when a solution of **1** (100 μ M) in the cell was titrated with **21** (1.00 mM) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 9.80 × 10⁴ M⁻¹ and Δ H = -5.09 ± 0.042 kcal•mol⁻¹.

Figure S48. Isothermal Titration Calorimetry (ITC) curve obtained when a solution of **1** (200 μ M) in the cell was titrated with **22** (5.00 mM) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 5.61 × 10⁴ M⁻¹ and Δ H = -3.98 ± 0.094 kcal•mol⁻¹.

Figure S49. Isothermal Titration Calorimetry (ITC) curve obtained when a solution of **1** (100 μ M) in the cell was titrated with **23** (1.00 mM) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 8.47 × 10³ M⁻¹ and Δ H = -4.95 ± 2.30 kcal•mol⁻¹.

Figure S50. Isothermal Titration Calorimetry (ITC) curve obtained when a solution of **1** (100 μ M) in the cell was titrated with **24** (1.00 mM) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 9.43 × 10⁵ M⁻¹ and Δ H =-9.63 ± 0.025 kcal•mol⁻¹.

Figure S51. Isothermal Titration Calorimetry (ITC) curve obtained when a solution of **1** (100 μ M) in the cell was titrated with **25** (2.00 mM) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 3.70×10^4 M⁻¹ and Δ H =-9.99 ± 0.129 kcal•mol⁻¹.

Figure S52. Isothermal Titration Calorimetry (ITC) curve obtained when a solution of **1** (200 μ M) in the cell was titrated with **26** (2.40 mM) in the syringe at 298.0 K in 20 mM sodium phosphate buffered water at pH 7.4. K_a = 4.67 × 10³ M⁻¹ and Δ H = -8.92 ± 0.445 kcal•mol⁻¹.

Figure S53. Electrospray mass spectrum for 1 recorded in the negative ion mode. The peak at 829.20204 corresponds to the $[M + 1H - 3Na]^{2-}$ ion.