Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

## Ultralight and highly compressible coal oxide-modified graphene

## aerogels for organic solvents absorption and light-to-heat conversion

Shengchao Hou, Yan Lv, Xueyan Wu, Jixi Guo\*, Qingqing Sun, Luxiang Wang,

Dianzeng Jia\*

Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key

Laboratory of Advanced Functional Materials, Autonomous Region; Institute of

Applied Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang P. R. China.

Email: jxguo1012@163.com; jdz@xju.edu.cn; Fax: +86-991-8588883; Tel: +86-991-

## 8583083.



Figure S1 (a)The nitrogen adsorption and desorption isotherms in Brunauer-Emmett-Teller (BET) measurement, (b) The pore size distribution of MGC.



Figure S2. The variation in appearance of hydrogels and aerogels with different mass ratios (5:1, 3:1, 1:1, 1:3 and 1:5, respectively; dopamine hydrochloride=6 mg) of GO and CO with the precursor concentration of 4 mg cm<sup>-3</sup>.



**Figure S3.** The hydrogel appearance of GA and GC with the precursor concentration of 4 mg cm<sup>-3</sup> and photograph of ultralight MGA and MGC samples on dandelion



Figure S4. TEM images of coal oxide and corresponding elemental mapping.



Figure S5. Optical image of water droplet and dichloromethane on the surface of the MGC in contact angle measurement.



Figure S6. Cyclic compression curves of modified aerogels with different CO concentrations.



**Figure S7.** The SEM images of the composite aerogels with different feeding ratio of GO and CO, (a) 5:1, (b) 3:1, (c) 1:1, (d) 1:3 and (e) 1:5.



Figure S8. TGA curve of MGC performed under an N<sub>2</sub> atmosphere with heating rate of 10 °C min<sup>-1</sup>.



Figure S9. SEM images of MGC after oil recycling: (a) combustion method.

Table S1. Atom percentage of GC and MCG from XPS survey scans.

|     | C (%) | O (%) | Si (%) | N (%) |
|-----|-------|-------|--------|-------|
| GC  | 57.86 | 38.97 | 0      | 3.17  |
| MGC | 82.56 | 11.33 | 5.28   | 0.83  |

Table S2. The proportion of different bonds with Gauss fitted for XPS curves.

|     | GC       |      | MGC      |      |
|-----|----------|------|----------|------|
|     | position | %    | position | %    |
| C-C | 284.88   | 64.9 | 284.78   | 91.6 |
| C-O | 286.28   | 24.8 | 286.28   | 7.5  |
| C=O | 288.68   | 12.3 | 288.68   | 0.9  |

Table S3. Comparison of various graphene-based absorbent materials.

| Sorbents                          | Absorbates                | Capacity             | Ref. |
|-----------------------------------|---------------------------|----------------------|------|
|                                   |                           | (g g <sup>-1</sup> ) |      |
| Graphene sponges                  | Oils and organic solvents | 20-86                | 42   |
| Graphene aerogels                 | Organic liquids           | 120-200              | 43   |
| Magnetic graphene foam            | Oil and organic solvents  | 10-27                | 44   |
| Peanut hull/graphene aerogel      | Oil and organic solvents  | 32-79                | 8    |
| Nanofiber/graphene aerogel        | Oils absorption           | 120-286              | 45   |
| Graphene/ cellulose aerogel       | Organic solvents          | 44–265               | 46   |
| Carbon nanotubes/graphene aerogel | Organic compounds         | 322±8.3              | 3    |

Table S4. Comparison of various bioass-based absorbent materials.

| Sorbents                                | Absorbates                | Capacity             | Ref. |
|-----------------------------------------|---------------------------|----------------------|------|
|                                         |                           | (g g <sup>-1</sup> ) |      |
| Coal-based fiber                        | Organic matter            | 0.07                 | 12   |
| Melamine/lignin sponges                 | Oil                       | 98-217               | 47   |
| Lignin-based xerogel                    | Oils and organic solvents | 19–47                | 48   |
| Cellulose nanofibrils aerogel           | Oil                       | 88-143               | 49   |
| Twisted carbon fibers                   | Oils and organic solvents | 50-190               | 11   |
| Bamboo-based aerogel                    | Oils and organic solvents | 30-129               | 50   |
| sodium alginate foams                   | Oils and organic solvents | 73–187               | 51   |
| Graphene/coal oxide aerogels            | Oils and organic solvents | 93–196               | This |
|                                         |                           |                      | work |
| Carbonated graphene/coal oxide aerogels | Oils and organic solvents | 170-387              | This |
|                                         |                           |                      | work |