Supplementary Material

A novel cobalt doped MOFs-based photocatalyst with great applicability as an efficient mediator of peroxydisulfate activation for enhanced degradation of organic pollutants

Shi-Wen Lv ${ }^{\text {a, }}$, Jing-Min Liu ${ }^{\text {a }}$, Ning Zhao ${ }^{\text {a }}$, Chun-Yang Li ${ }^{\text {a }}$, Zhi-Hao Wang ${ }^{\text {a }}$, Shuo

$$
\text { Wang } \mathrm{a}, \mathrm{~b}, \text { * }
$$

a. Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
b. College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China

[^0]
Analytical method

The measuring methods for other organic pollutants were as follows: At given intervals, a certain amount of solution was collected and centrifuged at $8000 \times \mathrm{g}$ for 10 min. Then, as-obtained suspension was diluted and filtered via $0.22 \mu \mathrm{~m}$ filter membrane. The concentrations of OFX, DCF, TC and SME were determined using a UV-vis spectrophotometer (Hitachi U-3900) at 286, 276, 358, and 264 nm , respectively. The standard curves established were shown in Fig. S9. In addition, the organic dye solutions do not need to be filtered before determination. And the concentrations were monitored using a UV-vis spectrophotometer according to the chromatometry.

Kinetics study

The kinetics of Co-doped MIL-53- NH_{2} was explored using the pseudo-first-order kinetics. The kinetic equation for the reaction can be expressed as:

$$
\begin{equation*}
-\ln \left(\frac{C_{t}}{C_{0}}\right)=k t \tag{1}
\end{equation*}
$$

where k is the apparent rate constant; t is the reaction time; C_{0} and C_{t} are the initial concentration of target object and the concentration of target object at time t , respectively.

Fig. S1. Schematic illustration of the synthesis of Co-doped MIL-53-NH2.

Fig. S2. EDX spectra of Co-doped MIL-53-NH2 (Fe:Co 4:1)

Fig. S3. The relationship of $(\alpha h v)^{1 / 2}$ vs. $h v$.

Fig. S4. The photocatalytic degradation of BPA using as-prepared catalysts

Fig. S5. The TOC removal efficiency by as-prepared catalysts.

Fig. S6. A possible BPA degradation pathway.

Fig. S7. The effects of pH on BPA degradation over Co-doped MIL-53-NH2 (Fe:Co 4:1)

Fig. S8. The TOC removal efficiency for other organic pollutants by Co-doped MIL-$53-\mathrm{NH}_{2}$.

Fig. S9. The standard curves of target objects (Insert: the spectrum scan).

[^0]: *Corresponding author.

 Mail to: No. 94 Weijin Road, Tianjin, 300071, China.
 Email: wangshuo@nankai.edu.cn (Shuo Wang)
 Tel: +86-22-85358445

