Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Impact of Donor Substituent on Optoelectrochemical properties of

6H-indolo[2,3-b]quinoxaline Amine Derivatives

Pooja S. Singh,^a Purav M. Badani^a and Rajesh M. Kamble*^a

^aDepartment of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400 098, India

Email: kamblerm@chem.mu.ac.in

Supporting information

1	Absorption and Emission spectra of compound 1-9 in various solvents and	3
	neat solid film	
2	Photophysical data of 1–9 in various solvents	6
3	Emission images of 1–9 in various solvent and neat solid film	9
4	AIE photophysical spectrum	12
5	Dynamic light scattering (DLS) plot	14
6	Cyclic voltammetry (CV) of compounds 1–9 in anhydrous dichloromethane	15
7	TGA plot of compounds 2–9	16
8	MALDI-TOF spectra of compounds 1–9	17
9	FTIR Spectra of compounds 1–9	22
10	¹ H spectra of compounds 1–9	27
11	¹³ C NMR and DEPT-135 spectra of compounds 1–9	32

12	Optimized structures of compounds 1–9	41
13	Frontier molecular orbitals of compound 1–9	46
14	Cartesian coordinates and Mulliken Charges of compounds 1–9	51
	Table S2. Cartesian coordinates of optimized structure of compound 1	
	Table S3. Cartesian coordinates of optimized structure of compound 2	
	Table S4. Cartesian coordinates of optimized structure of compound 3	
	Table S5. Cartesian coordinates of optimized structure of compound 4	
	Table S6. Cartesian coordinates of optimized structure of compound 5	
	Table S7. Cartesian coordinates of optimized structure of compound 6	
	Table S8 . Cartesian coordinates of optimized structure of compound 7	
	Table S9. Cartesian coordinates of optimized structure of compound 8	
	Table S10. Cartesian coordinates of optimized structure of compound 9	

15 Vertical electronic transition in gas phase

1. Absorption and Emission spectra of compound 1 9 in various solvents and solid film

Fig. S1 Absorption spectra (a) and Emission spectra (b) of 1 in various solvent.

Fig. S2 Absorption spectra (a) and Emission spectra (b) of 1 in Solid Film.

Fig. S3 Absorption spectra (a) and Emission spectra (b) of 2–9 in Toluene.

Fig. S4 Absorption spectra (a) and Emission spectra (b) of 2–9 in Chloroform.

Fig. S5 Absorption spectra (a) and Emission spectra (b) of 2–9 in DCM.

Fig. S7 Absorption spectra (a) and Emission spectra (b) of 2–9 in DMSO.

Fig. S8 Absorption spectra (a) and Emission spectra (b) of 2–9 in Solid Film.

2. Photophysical data of 1–9 in various solvents

Solvent	λ _{abs} , nm	λ _{em} , nm	Stokes shift , nm	Φ _F (%)	E_{g}^{opt} eV
Toluene	284, 344, 361, 412	—	_	_	_
DCM	286, 344, 361, 414	_	_	_	_
Chloroform	286, 345, 361, 416	—	-	_	_
THF	283, 346, 360, 411	_	_	_	_
DMSO	286, 346, 363, 416	_	_	_	_

 Table S1 Photophysical data of 1 in various solvents:

Table S2 Photophysical data of 2 in various solvents:

Solvent	λ _{abs} , nm	λ _{em} , nm	Stokes shift, cm ⁻¹	Φ _F (%)	E_{g}^{opt} eV
Toluene	289, 437	500	2883	9.25	2.63
DCM	311, 438	540	4312	5.55	2.49
Chloroform	312, 442	541	4140	3.70	2.56
THF	300, 434	517	3699	3.70	2.57
DMSO	299, 438	550	4649	1.85	2.44

 Table S3 Photophysical data of 3 in various solvents:

Solvent	λ _{abs} , nm	λ _{em} , nm	Stokes shift, cm ⁻¹	Ф _F (%)	E_{g}^{opt} eV
Toluene	306, 432	491	2781	12.96	2.69
DCM	276, 433	536	4438	9.25	2.57
Chloroform	310, 438	537	4209	5.55	2.61
THF	306, 429	507	3586	5.55	2.64
DMSO	306, 433	544	4712	1.85	2.54

Table S4 Photophysical data of 4 in various solvents:

Solvent	λ _{abs} , nm	λ _{em} , nm	Stokes shift, cm ⁻¹	Φ _F (%)	E_{g}^{opt} eV
Toluene	316, 450	579	4951	11.13	2.42
DCM	314, 449	—	_	_	-
Chloroform	311, 454	_	_	—	—
THF	279, 445	—	_	—	—
DMSO	318, 447	_	_	_	_

 Table S5 Photophysical data of 5 in various solvents:

Solvent	λ _{abs} , nm	λ _{em} , nm	Stokes shift, cm ⁻¹	Φ _F (%)	E_{g}^{opt} eV
Toluene	302, 422	548	5448	1.85	2.48
DCM	300, 425		_		_
Chloroform	301, 428		-		_
THF	276, 417	510	4372	0.37	2.54
DMSO	295, 423	—	_	_	—

 Table S6 Photophysical data of 6 in various solvents:

Solvent	λ _{abs} , nm	λ _{em} , nm	Stokes shift, cm ⁻¹	Φ _F (%)	E_{g}^{opt} eV
Toluene	313, 443	—	_	—	_
DCM	312, 444	_	_	_	—
Chloroform	306, 447	_	_	_	—
THF	306, 439	_	_		_
DMSO	309, 445		_		_

Table S7 Photophysical data of 7 in various solvents:

Solvent	λ _{abs} , nm	λ _{em} , nm	Stokes shift, cm ⁻¹	Φ _F (%)	E_{g}^{opt} eV
Toluene	292, 340, 410	523	5269	11.12	2.64
DCM	292, 340, 402	549	6660	1.85	2.59
Chloroform	292, 340, 407	546	6255	1.12	2.63
THF	290, 339, 400	543	6583	3.7	3.00
DMSO	292, 339, 401	550	6755	1.12	2.70

Table S8 Photophysical data of 8 in various solvents:

Solvent	λ _{abs} , nm	λ _{em} , nm	Stokes shift, cm ⁻¹	Φ _F (%)	E_{g}^{opt} eV
Toluene	284, 335, 404	_	_	—	-
DCM	278, 334, 407	—	_	—	_
Chloroform	276, 335, 403	_	_	—	—
THF	276, 332, 404	_	_	_	_
DMSO	281, 336, 411	_	_	_	_

 Table S9 Photophysical data of 9 in various solvents:

Solvent	λ _{abs} , nm	λ _{em} , nm	Stokes shift, cm ⁻¹	Ф _F (%)	E_{g}^{opt} eV
Toluene	286, 340, 356, 416	_	-	_	_
DCM	284, 341, 356, 416	_	_	_	_
Chloroform	283, 340, 356, 417	—	_	—	—
THF	276, 339, 354, 413	—	_	_	—
DMSO	286, 342, 358, 417	_	_	_	_

3. Emission images of 1–9 in various solvent and neat solid film

(a) Toluene

(b) Chloroform

9

(c) Dichloromethane

(e) DMSO

Fig. S9. Emission images of **2–9** in toluene (**a**), CHL (**b**) DCM (**c**), THF (**d**) and DMSO (**e**) and solid film (**f**) under 365 nm UV illumination

4. AIE photophysical spectrum

Fig. S10. Absorbance spectra of 2 (a), 3 (b), 5 (c), 7 (d), 8 (e) and 9 (f) in THF–water mixtures with different water fractions (10 μM).

Fig. S11. Emission spectra (left) and Plot of wavelength and emission intensity versus % of water fraction in THF/Water mixture with different water fractions (10 μ M) of 2 (a), 3 (b), and 5(c) (right) excited at 440 nm. Emission spectra of 8 (d) and 8 (e) in THF/Water mixture with different water fractions (10 μ M) excited at 390 nm.

5. Dynamic light scattering (DLS) plot

Fig. S12 DLS plot of 2 (a), 3 (b), 5 (c), 7 (d–f), 8 (g) and 9 (h) showing formation nanoparticle obtained from different f_w of THF–H₂O homogenous suspension.

6. Cyclic voltammetry (CV) of compounds 1-9

Fig. S13. Cyclic voltammogram (full scan) of compounds 1–9.

Fig. S14. TGA plot of compounds 1–9.

8. MALDI-TOF Spectra of compounds 1–9

Fig. S15. MALDI-TOF spectrum of compound 1

Fig. S16. MALDI-TOF spectrum of compound 2 (above) and 3 (below)

Fig. S17. MALDI-TOF spectrum of compound 4 (above) and 5 (below)

Fig. S18. MALDI-TOF spectrum of compound 6 (above) and 7 (below)

Fig. S19. MALDI-TOF spectrum of compound 8 (above) and 9 (below)

Fig. S20. FTIR spectrum of compound 1 (above) and 2 (below).

Fig. S21. FTIR spectrum of compound 3 (above) and 4 (below).

Fig. S22. FTIR spectrum of compound 5 (above) and 6 (below).

Fig. S23. FTIR spectrum of compound 7 (above) and 8 (below).

Fig. S24. FTIR spectrum of compound 9.

10. ¹H spectra of compounds 1 9

Fig. S25. ¹H NMR spectrum of compound 1 (above) and 2 (below).

Fig. S26. ¹H NMR spectrum of compound 3 (above) and 4 (below).

Fig. S27. ¹H NMR spectrum of compound 5 (above) and 6 (below).

Fig. S28. ¹H NMR spectrum of compound 7 (above) and 8 (below).

Fig. S29. ¹H NMR spectrum of compound 9.

11. ¹³C NMR and DEPT-135 spectra of compounds 1 9

Fig. S30. ¹³C (above) and DEPT-135 (below) NMR spectrum of compound 1.

Fig. S31. ¹³C (above) and DEPT-135 (below) NMR spectrum of compound 2.

Fig. S32. ¹³C (above) and DEPT-135 (below) NMR spectrum of compound 3.

Fig. S33. ¹³C (above) and DEPT-135 (below) NMR spectrum of compound 4.

Fig. S34. ¹³C (above) and DEPT-135 (below) NMR spectrum of compound 5.

Fig. S35. ¹³C (above) and DEPT-135 (below) NMR spectrum of compound 6.

Fig. S36. ¹³C (above) and DEPT-135 (below) NMR spectrum of compound 7.

Fig. S37. ¹³C (above) and DEPT-135 (below) NMR spectrum of compound 8.

Fig. S38. ¹³C (above) and DEPT-135 (below) NMR spectrum of compound 9.

12. Optimized structures of compounds 1 9

Fig. S39. Optimized structure of 1.

Fig. S40. Optimized structure of 2 and 3.

Fig. S41. Optimized structure of 4 and 5.

Fig. S42. Optimized structure of 6 and 7.

Fig. S43. Optimized structure of 8 and 9.

Fig. S44. Frontier molecular orbitals of compound 1.

Fig. S45. Frontier molecular orbitals of compound 2 and 3.

Fig. S46. Frontier molecular orbitals of compound 4 and 5.

Fig. S47. Frontier molecular orbitals of compound 6 and 7.

Fig. S48. Frontier molecular orbitals of compound 8 and 9.

14. Cartesian coordinates and Mulliken Charges of compounds 1 9

 Table S10. Cartesian coordinates of optimized structure of molecule 1.

	X	у	Z	Mulliken charges
С	3.97012	-0.84594	-0.03373	-0.213892
С	4.5395	0.43029	-0.13693	-0.019008
С	3.7276	1.56684	-0.21209	-0.068338
С	2.34241	1.38548	-0.18273	0.267383
С	1.77382	0.08215	-0.07835	-0.137359
С	2.59501	-1.04591	-0.00304	0.070033
N	1.3168	2.34543	-0.25368	-0.53459
С	0.09944	1.68862	-0.18852	0.44192
С	0.3377	0.2632	-0.08098	0.094646
N	-1.09839	2.24227	-0.22233	-0.37259
С	-2.14903	1.34892	-0.14967	0.098463
С	-1.92782	-0.07051	-0.04197	0.092924
N	-0.65645	-0.60826	-0.00834	-0.341073
С	1.47734	3.79982	-0.33472	-0.103691
С	-3.47957	1.83764	-0.18038	-0.069404
С	-4.54877	0.96722	-0.10851	-0.021705
С	-4.31046	-0.42278	-0.00284	-0.200286
С	-3.04108	-0.9466	0.03132	0.003251
С	1.76281	4.45028	1.02655	-0.286243
Br	5.15327	-2.38924	0.07027	-0.041055
Br	-5.84424	-1.61446	0.09546	-0.033313
Н	5.61752	0.53382	-0.15717	0.127467
Н	4.17285	2.55177	-0.28896	0.124473
Н	2.17005	-2.03859	0.07536	0.119729
Н	2.28149	4.01534	-1.04771	0.134948
Н	0.54572	4.18938	-0.75375	0.142842
Н	-3.62491	2.90855	-0.26199	0.115469
Н	-5.56721	1.33466	-0.13199	0.127247
Н	-2.85505	-2.00965	0.11213	0.12309
Н	1.88088	5.53335	0.90867	0.120111
Н	0.93497	4.2691	1.7191	0.122888
Н	2.67953	4.05342	1.47568	0.115663

Total energy: -5929.09 Hartrees

 Table S11. Cartesian coordinates of optimized structure of molecule 2.

Total energy: -1817.14 Hartrees

	X	у	Z	Mulliken charges
С	-0.84281	0.97381	0.01103	0.09092
С	-0.35303	2.29759	-0.08868	-0.076044
С	-1.20605	3.4033	-0.06987	-0.06713
С	-2.58057	3.17136	0.02473	0.260445
С	-3.08928	1.84279	0.11028	-0.124108
С	-2.2238	0.74799	0.116	-0.009199
N	-3.64643	4.0904	0.0431	-0.536332
С	-4.83173	3.37937	0.15128	0.43058
С	-4.53087	1.96424	0.19352	0.089054
N	-6.05213	3.88269	0.20297	-0.376341
С	-7.05819	2.94363	0.29893	0.093896
С	-6.779	1.53103	0.3465	0.096492
N	-5.48412	1.04842	0.29141	-0.347372
С	-3.55114	5.55016	0.00172	-0.100868
N	0.07571	-0.12585	-0.00109	-0.506861
С	-8.41017	3.36744	0.35894	-0.071383
С	-9.4328	2.45063	0.46042	-0.087595
С	-9.16301	1.04586	0.49208	0.139332
С	-7.84703	0.60698	0.43113	-0.093339
N	-10.24563	0.12786	0.60698	-0.502699
С	-0.18167	-1.25308	-0.83955	0.125196
С	1.22939	-0.09002	0.83815	0.129779
С	-11.46226	0.3592	-0.10654	0.113042
С	2.46715	-0.58112	0.37861	-0.096818
С	3.59247	-0.53923	1.20497	-0.103694
С	3.51244	0.00573	2.49266	-0.108814
С	2.28552	0.50255	2.94888	-0.10419
С	1.15035	0.45064	2.13611	-0.102697
C	0.07081	-2.56021	-0.38082	-0.095724
C	-0.18181	-3.65764	-1.20731	-0.103324
С	-0.70499	-3.47638	-2.49352	-0.107647
C	-0.96684	-2.17824	-2.94813	-0.102459
C	-0.70178	-1.07336	-2.13552	-0.096234
C	-12.70348	0.08551	0.49894	-0.08959
С	-13.89163	0.30767	-0.20064	-0.102674
С	-13.8657	0.81991	-1.50408	-0.106252
С	-12.63295	1.09827	-2.1062	-0.101861
С	-11.438	0.86234	-1.42095	-0.096159
С	-10.09805	-1.06525	1.38622	0.099306
С	-10.52909	-2.30396	0.87888	-0.086564
С	-10.39843	-3.46292	1.64901	-0.102158
С	-9.82311	-3.40736	2.92398	-0.104356
С	-9.38558	-2.17558	3.42714	-0.100928

C	-9.52772	-1.00978	2.67101	-0.077212
С	-3.22782	6.17242	1.36811	-0.286932
Н	0.7166	2.45001	-0.17732	0.118554
Н	-0.80167	4.4067	-0.14018	0.1153
Н	-2.6149	-0.25941	0.19508	0.10836
Н	-2.79164	5.82359	-0.74016	0.131058
Н	-4.51757	5.91235	-0.35977	0.13928
Н	-8.60739	4.43329	0.33807	0.10498
Н	-10.46064	2.78741	0.52447	0.125102
Н	-7.59968	-0.44697	0.44963	0.113424
Н	2.54015	-0.99058	-0.62247	0.117237
Н	4.53859	-0.92184	0.83443	0.106045
Н	4.39045	0.04199	3.12902	0.102805
Н	2.2058	0.9209	3.94762	0.105688
Н	0.19989	0.82283	2.50118	0.116469
Н	0.46023	-2.70855	0.61986	0.116741
Н	0.01707	-4.65879	-0.83735	0.105943
Н	-0.90744	-4.3319	-3.12931	0.102886
Н	-1.36902	-2.02159	-3.94429	0.105879
Н	-0.89552	-0.07033	-2.49821	0.114232
Н	-12.72869	-0.29733	1.51283	0.116855
Н	-14.84084	0.09222	0.28009	0.10728
Н	-14.79112	0.99785	-2.04173	0.104474
Н	-12.5977	1.48684	-3.11927	0.107611
Н	-10.48565	1.06153	-1.89922	0.119178
Н	-10.96192	-2.3519	-0.11399	0.115531
Н	-10.73471	-4.41249	1.24451	0.107452
Н	-9.71601	-4.30989	3.51655	0.104923
Н	-8.9428	-2.11864	4.41658	0.107767
Н	-9.19827	-0.05607	3.06752	0.114856
Н	-3.15952	7.26285	1.28029	0.116498
Н	-4.01386	5.93482	2.09175	0.120975
Н	-2.27536	5.80028	1.76082	0.114134
-				

 Table S12. Cartesian coordinates of optimized structure of molecule 3.

Total energy: -2124.49 Hartrees

	Х	у	Z	Mulliken charges
C	0.49918	0.89198	0	0.122904
C	0.99749	2.21623	-0.08188	-0.08597
C	0.14883	3.31831	-0.19701	-0.06651
C	-1.22802	3.08692	-0.25801	0.261246
С	-1.74233	1.76087	-0.19687	-0.133885

C	-0.88454	0.66759	-0.05746	-0.022382
N	-2.28797	4.00428	-0.39171	-0.536231
C	-3.47716	3.29235	-0.40748	0.430111
C	-3.18326	1.87977	-0.29083	0.088859
N	-4.69542	3.79227	-0.51629	-0.377029
C	-5.70468	2.85239	-0.51573	0.092655
C	-5.43375	1.44304	-0.3956	0.091762
N	-4.14202	0.9637	-0.28199	-0.34795
C	-2.18723	5.46244	-0.45432	-0.100719
N	1.41264	-0.20386	0.10417	-0.509004
C	-7.0546	3.27336	-0.62956	-0.068632
C	-8.08238	2.35736	-0.62687	-0.092378
C	-7.81826	0.95369	-0.52455	0.146972
C	-6.50528	0.51812	-0.41024	-0.098157
N	-8.906	0.03724	-0.48798	-0.505009
C	1.07159	-1.46457	-0.49892	0.041141
C	2.53204	-0.14467	0.98796	0.140814
C	-10.05967	0.22359	-1.31025	0.133015
C	3.71852	-0.82987	0.65991	-0.095999
C	4.81627	-0.79298	1.5218	-0.106278
C	4.76068	-0.06469	2.71707	-0.109001
C	3.58478	0.62083	3.04375	-0.106322
C	2.47491	0.57821	2.19544	-0.110388
C	0.97635	-1.58424	-1.92762	-0.032815
C	0.61003	-2.85987	-2.48467	-0.061742
C	0.38358	-3.96645	-1.61833	-0.052241
C	0.51282	-3.82532	-0.25213	-0.101504
C	0.84875	-2.56998	0.30774	-0.036941
C	-11.32403	-0.18013	-0.84011	-0.092432
C	-12.45707	-0.02016	-1.64011	-0.105696
C	-12.35489	0.55532	-2.91321	-0.106451
C	-11.09959	0.95961	-3.38201	-0.104632
C	-9.95656	0.78822	-2.59582	-0.104009
C	-8.75802	-1.21137	0.21471	0.037035
C	-8.64616	-1.22506	1.64654	-0.024056
C	-8.4872	-2.49359	2.30709	-0.062235
C	-8.47244	-3.69012	1.53576	-0.050577
C	-8.61005	-3.64326	0.16397	-0.101592
C	-8.74559	-2.39943	-0.49785	-0.034339
C	-8.70665	-0.0446	2.43986	-0.036116
C	-8.59515	-0.10915	3.81477	-0.106143
C	-8.41692	-1.35668	4.46565	-0.093211
C	-8.36801	-2.52034	3.72622	-0.07203
C	-2.00594	6.11352	0.92512	-0.287303

C	1.25	-0.50568	-2.8158	-0.033799
С	1.14612	-0.66945	-4.18308	-0.108165
С	0.76237	-1.91958	-4.73214	-0.09319
С	0.5045	-2.98872	-3.89933	-0.073133
Н	2.06972	2.3725	-0.05003	0.120293
Н	0.56063	4.31977	-0.25056	0.114539
Н	-1.28649	-0.33649	0.00163	0.109146
Н	-1.35472	5.72181	-1.11915	0.130373
Н	-3.11084	5.81583	-0.92092	0.13885
Н	-7.24757	4.3377	-0.70341	0.104649
Н	-9.11008	2.6941	-0.69553	0.124025
Н	-6.26236	-0.53358	-0.32782	0.111225
Н	3.77144	-1.3848	-0.26993	0.11439
Н	5.72246	-1.32657	1.2518	0.105287
Н	5.61774	-0.03304	3.38161	0.101929
Н	3.52211	1.18103	3.97182	0.105151
Н	1.563	1.09705	2.4673	0.117561
Н	0.11283	-4.92418	-2.05286	0.095086
Н	0.34137	-4.67108	0.40568	0.107457
Н	0.93158	-2.46155	1.38362	0.104606
Н	-11.40947	-0.61309	0.15018	0.115227
Н	-13.42448	-0.33604	-1.26211	0.106408
Н	-13.23833	0.68413	-3.5297	0.103504
Н	-11.00324	1.39625	-4.37136	0.106926
Н	-8.98527	1.08309	-2.97624	0.119954
Н	-8.35596	-4.6407	2.04788	0.09589
Н	-8.60056	-4.55749	-0.42028	0.108121
Н	-8.83802	-2.36717	-1.57795	0.104974
Н	-8.8454	0.91015	1.94803	0.113577
Н	-8.64574	0.80064	4.40439	0.105731
Н	-8.32491	-1.39128	5.5465	0.106047
Н	-8.24105	-3.48076	4.21774	0.097595
Н	-1.92612	7.20192	0.82257	0.11585
Н	-2.86324	5.89087	1.56815	0.120759
Н	-1.10042	5.74888	1.4218	0.113684
Н	1.54536	0.4506	-2.40292	0.113798
Н	1.36136	0.1633	-4.84509	0.104401
Н	0.67852	-2.03184	-5.80841	0.105497
Н	0.21964	-3.95245	-4.31193	0.097173

 Table S13. Cartesian coordinates of optimized structure of molecule 4.

Total energy: -2275.34 Hartrees

	X	у	Z	Mulliken charges
С	4.15797	-0.87654	0.50783	0.115709
С	4.62267	-2.21033	0.61044	-0.088672
С	3.75653	-3.30305	0.53271	-0.069858
С	2.39152	-3.05162	0.37476	0.258241
С	1.90632	-1.71486	0.28463	-0.126259
С	2.78541	-0.63212	0.33842	-0.022218
N	1.31496	-3.95525	0.29009	-0.536362
С	0.14669	-3.22506	0.13321	0.427289
С	0.46877	-1.8142	0.12723	0.086996
N	-1.0767	-3.70956	0.01254	-0.37729
С	-2.06294	-2.7547	-0.12113	0.091732
С	-1.76339	-1.34542	-0.13438	0.093488
N	-0.46582	-0.88294	-0.00572	-0.349284
N	5.0879	0.20627	0.58193	-0.508426
С	-3.41594	-3.15683	-0.25758	-0.074318
С	-4.41924	-2.22472	-0.39952	-0.098163
С	-4.13144	-0.82184	-0.39888	0.162928
С	-2.81219	-0.40504	-0.26272	-0.107182
N	-5.19305	0.10746	-0.55785	-0.503706
С	4.77426	1.36951	1.35181	0.105684
С	6.3227	0.13539	-0.13381	0.10529
С	-6.47867	-0.1576	0.01391	0.081699
C	-4.97633	1.35801	-1.22513	0.085079
С	7.52527	0.56992	0.46213	-0.088267
С	8.72672	0.50686	-0.23613	-0.095609
C	8.76067	-0.01061	-1.54002	0.168546
C	7.57755	-0.45588	-2.1417	-0.13279
C	6.36775	-0.37023	-1.44267	-0.09395
C	5.06021	2.658	0.85496	-0.08954
C	4.7661	3.79029	1.60766	-0.095897
C	4.15884	3.66431	2.8661	0.169579
C	3.85786	2.3924	3.36815	-0.131141
C	4.17668	1.2556	2.61676	-0.088667
C	-5.43171	2.56154	-0.652	-0.082398
C	-5.24375	3.77441	-1.30782	-0.095586
C	-4.57885	3.81238	-2.54253	0.172618
С	-4.11346	2.6241	-3.12057	-0.13025
С	-4.3244	1.40568	-2.46631	-0.069988
С	-7.65193	0.0874	-0.72827	-0.078859
С	-8.90404	-0.15929	-0.17567	-0.09475
С	-9.01263	-0.67428	1.12575	0.171514
С	-7.85625	-0.92752	1.8734	-0.131081
С	-6.59919	-0.65656	1.31969	-0.082835

C	1.38762	-5.41602	0.31429	-0.099966
С	1.7601	-6.0248	-1.04581	-0.287051
0	3.89654	4.86026	3.53274	-0.39186
С	3.26136	4.80312	4.8348	-0.128668
0	-4.43226	5.07569	-3.10993	-0.390257
С	-3.73868	5.19206	-4.37866	-0.129161
0	10.01628	-0.03934	-2.14581	-0.391732
С	10.12092	-0.54474	-3.50042	-0.128418
0	-10.3107	-0.89815	1.5783	-0.390179
C	-10.49937	-1.42847	2.91506	-0.128885
Н	5.68401	-2.38087	0.74991	0.118077
Н	4.14417	-4.31283	0.60799	0.112997
Н	2.41057	0.381	0.2553	0.10755
Н	-3.62924	-4.2199	-0.26266	0.102706
Н	-5.44592	-2.54782	-0.52272	0.125133
Н	-2.5477	0.64466	-0.25393	0.112117
Н	7.50846	0.95848	1.47397	0.115113
Н	9.65503	0.84007	0.21308	0.109465
Н	7.57641	-0.85387	-3.14918	0.117291
Н	5.45098	-0.70007	-1.91832	0.114525
Н	5.51462	2.76326	-0.12345	0.114715
Н	4.98282	4.78436	1.23438	0.10911
Н	3.39132	2.26862	4.33778	0.117517
Н	3.95446	0.27226	3.01558	0.112956
Н	-5.93486	2.53763	0.30793	0.113612
Н	-5.59017	4.70638	-0.87692	0.110376
H	-3.60143	2.62846	-4.07486	0.11921
Н	-3.97328	0.48601	-2.92062	0.114258
H	-7.57159	0.4722	-1.73857	0.114218
H	-9.81256	0.02557	-0.73672	0.110919
H	-7.9152	-1.31703	2.88234	0.119227
H	-5.70566	-0.83619	1.90718	0.116808
Н	2.11101	-5.71116	1.08357	0.129667
H	0.40169	-5.7696	0.62886	0.138063
H	1.80904	-7.11733	-0.97095	0.115238
H	1.009	-5.7655	-1.79854	0.120414
H	2.73363	-5.66126	-1.39226	0.113482
H	3.15538	5.84136	5.14775	0.134106
H	2.27245	4.3322	4.77649	0.119006
H	3.88204	4.261	5.55877	0.117631
H	-3.73925	6.25706	-4.60811	0.135051
H	-2.70606	4.83068	-4.30302	0.120153
Н	-4.2617	4.64336	-5.17129	0.118763
H	11.17749	-0.46689	-3.75475	0.134428

Н	9.80277	-1.59278	-3.56199	0.117281
Н	9.52769	0.05826	-4.1987	0.118428
Н	-11.57801	-1.52214	3.03603	0.135337
Н	-10.02844	-2.41304	3.02383	0.118798
Н	-10.10042	-0.74619	3.67544	0.119386

 Table S14. Cartesian coordinates of optimized structure of molecule 5.

Total energy: -2226.25 Hartrees

	Х	у	Z	Mulliken charges
С	4.18883	0.96395	0.171	0.052177
C	4.69812	2.28094	0.12489	-0.06114
С	3.85597	3.3905	0.02539	-0.062105
C	2.47872	3.16358	-0.04572	0.264705
C	1.95412	1.83821	-0.00488	-0.118967
С	2.8062	0.73985	0.11424	0.013458
N	1.42586	4.08719	-0.16689	-0.535821
C	0.23134	3.38523	-0.19296	0.437835
C	0.51441	1.96841	-0.09352	0.093075
N	-0.98205	3.89584	-0.29726	-0.373509
C	-2.00007	2.96441	-0.30514	0.0972
C	-1.73756	1.55226	-0.19531	0.106209
N	-0.44981	1.06039	-0.09172	-0.344095
C	1.53651	5.54794	-0.21169	-0.102836
N	5.10218	-0.14121	0.29886	-0.498652
С	-3.34479	3.39959	-0.4211	-0.066048
C	-4.37995	2.49027	-0.41963	-0.07026
C	-4.12249	1.09037	-0.31028	0.092
C	-2.81649	0.63622	-0.21126	-0.065335
N	-5.22837	0.179	-0.31766	-0.496182
C	5.07481	-1.20567	-0.61903	0.21705
C	6.03723	-0.11639	1.39084	0.081717
C	-6.23853	0.35423	-1.32761	0.058464
C	-5.31625	-0.87747	0.61101	0.208668
C	7.40429	-0.35534	1.16561	-0.071575
C	8.30677	-0.31037	2.23173	-0.098181
C	7.86178	-0.00987	3.52519	-0.098005
C	6.50214	0.24022	3.74676	-0.100769
С	5.59067	0.18283	2.68871	-0.077686
C	5.54215	-2.49239	-0.25311	-0.122206
C	5.51475	-3.54118	-1.16169	-0.055253
C	5.0162	-3.32558	-2.45247	0.142741
C	4.54272	-2.06542	-2.83755	-0.054791

C	4.57216	-1.01574	-1.93005	-0.121252
С	-6.00629	-2.0687	0.28153	-0.120912
С	-6.10848	-3.10572	1.19947	-0.05339
С	-5.51915	-2.97004	2.46176	0.143431
С	-4.82785	-1.80353	2.81125	-0.053639
С	-4.72865	-0.76608	1.89444	-0.112058
C	-7.59757	0.40196	-0.97241	-0.063006
C	-8.57054	0.58364	-1.95881	-0.097226
C	-8.19898	0.73638	-3.30076	-0.096657
C	-6.84433	0.7	-3.65197	-0.098337
C	-5.86552	0.50395	-2.67317	-0.070396
С	1.70647	6.18082	1.17697	-0.286306
N	4.9903	-4.4195	-3.40155	0.14506
0	4.51282	-4.20218	-4.55807	-0.311477
0	5.44756	-5.54584	-3.03488	-0.310712
N	-5.62742	-4.05145	3.42145	0.145716
0	-5.06558	-3.91149	4.5511	-0.309007
0	-6.28053	-5.08765	3.08878	-0.308536
Н	5.77166	2.42495	0.17191	0.119678
Н	4.2704	4.39135	-0.00382	0.120778
Н	2.40479	-0.26591	0.15908	0.111949
Н	2.37732	5.80701	-0.86535	0.134437
Н	0.62051	5.91156	-0.6849	0.142442
Н	-3.52713	4.46524	-0.4975	0.110607
Н	-5.40682	2.82846	-0.49546	0.123305
Н	-2.58476	-0.41968	-0.14219	0.117538
Н	7.75226	-0.57277	0.16178	0.119731
Н	9.35986	-0.49737	2.04808	0.113483
Н	8.56605	0.02999	4.34935	0.110958
Н	6.14683	0.46993	4.74609	0.112649
Н	4.53598	0.36575	2.86137	0.116959
H	5.91218	-2.66388	0.74928	0.136812
Н	5.85958	-4.52918	-0.8862	0.138651
Н	4.1713	-1.92504	-3.84413	0.137933
Н	4.2184	-0.03859	-2.23214	0.133717
Н	-6.44898	-2.17763	-0.70005	0.136911
Н	-6.62449	-4.024	0.95184	0.139443
Н	-4.39209	-1.7221	3.79829	0.138923
Н	-4.20602	0.14092	2.16899	0.135648
Н	-7.88327	0.29806	0.06863	0.118768
Н	-9.6178	0.61821	-1.67668	0.114247
Н	-8.95674	0.88294	-4.06308	0.111919
Н	-6.5476	0.81323	-4.68956	0.113882
Н	-4.81646	0.46265	-2.94447	0.118061

Н	1.79234	7.2695	1.08648	0.120122
Н	0.84144	5.95662	1.80886	0.122252
Н	2.60526	5.80768	1.6794	0.115017

 Table S15. Cartesian coordinates of optimized structure of molecule 6.

Total energy: -2498.33 Hartrees

	X	у	Z	Mulliken charges
С	3.18586	-1.96573	1.00997	0.076241
С	3.83607	-3.02191	0.33	-0.06703
С	3.14158	-3.89274	-0.51239	-0.063718
С	1.7631	-3.71088	-0.65238	0.263907
С	1.09329	-2.66147	0.04201	-0.124428
С	1.80316	-1.78426	0.86263	-0.001056
N	0.8351	-4.44553	-1.41246	-0.536277
С	-0.41838	-3.88199	-1.23197	0.434081
С	-0.30523	-2.761	-0.32269	0.090662
N	-1.55049	-4.28323	-1.78158	-0.375123
С	-2.65845	-3.54382	-1.42206	0.095728
С	-2.56496	-2.42269	-0.52245	0.101612
N	-1.35758	-2.03757	0.0308	-0.345626
С	-3.92965	-3.88451	-1.95045	-0.068628
С	-5.04973	-3.1565	-1.61467	-0.081052
С	-4.96338	-2.04912	-0.71506	0.119159
С	-3.73254	-1.70221	-0.17615	-0.082369
N	3.94411	-1.09332	1.86146	-0.500459
С	1.11933	-5.58086	-2.29277	-0.101915
С	1.65653	-5.15745	-3.66771	-0.286737
N	-6.14772	-1.3191	-0.39369	-0.499769
С	-7.35931	-2.04136	-0.13532	0.084452
С	-6.12347	0.09683	-0.27971	0.15915
C	3.46534	-0.83919	3.18847	0.096956
С	5.13635	-0.49582	1.38855	0.178382
C	3.44991	0.46965	3.70389	-0.079107
C	2.97192	0.7092	4.99457	-0.100206
C	2.4881	-0.34418	5.78042	-0.101753
С	2.49269	-1.64554	5.26409	-0.101088
С	2.98345	-1.89669	3.98017	-0.084246
C	6.20393	-0.21251	2.26883	-0.111299
C	7.37201	0.36932	1.78896	-0.05443
C	7.5178	0.67724	0.42534	0.033171
С	6.45478	0.39699	-0.45733	-0.02857
С	5.28371	-0.17659	0.01592	-0.114914

C	-6.91506	0.75226	0.68569	-0.106539
C	-6.89947	2.14059	0.77852	-0.053504
C	-6.09256	2.90904	-0.07641	0.036266
C	-5.29779	2.25747	-1.0416	-0.025658
C	-5.31569	0.87403	-1.14383	-0.095938
C	-8.57449	-1.61574	-0.70187	-0.075254
C	-9.75092	-2.32574	-0.45091	-0.0997
C	-9.73025	-3.47464	0.35043	-0.101505
C	-8.51981	-3.90394	0.90735	-0.099819
C	-7.34064	-3.19005	0.67524	-0.083549
N	8.74855	1.26034	0.04706	-0.215976
N	8.8888	1.51859	-1.20136	-0.228509
C	10.13022	2.10915	-1.57153	0.044502
N	-6.15121	4.31104	0.10755	-0.216103
N	-5.40097	5.00901	-0.66238	-0.225438
C	-5.46654	6.41864	-0.47483	0.044185
C	10.28278	2.38993	-2.93889	-0.06277
C	11.4641	2.96894	-3.40852	-0.104369
C	12.49828	3.26969	-2.51339	-0.094435
C	12.34581	2.98935	-1.14569	-0.107382
C	11.16928	2.41191	-0.67082	-0.037349
C	-4.63995	7.17922	-1.31736	-0.061385
C	-4.62719	8.5723	-1.21537	-0.104098
C	-5.44075	9.21048	-0.27094	-0.093461
C	-6.26771	8.44976	0.57175	-0.107248
C	-6.2849	7.05933	0.47503	-0.035986
Н	4.90376	-3.1502	0.46764	0.121626
Н	3.66652	-4.6893	-1.0269	0.11847
Н	1.29208	-0.9795	1.37768	0.109714
Н	-3.98472	-4.72308	-2.63516	0.107498
Н	-6.014	-3.41307	-2.0372	0.124899
Н	-3.62792	-0.87498	0.51483	0.116698
Н	1.83049	-6.24089	-1.78245	0.132653
Н	0.17835	-6.12622	-2.40521	0.140579
Н	1.85883	-6.04206	-4.28226	0.118126
Н	0.92233	-4.53688	-4.19091	0.121671
Н	2.58607	-4.5857	-3.5749	0.115029
Н	3.80725	1.2897	3.09135	0.118997
Н	2.96324	1.72388	5.37984	0.110224
Н	2.11017	-0.15279	6.77919	0.106983
Н	2.12272	-2.47052	5.86462	0.108864
Н	2.9952	-2.90648	3.58561	0.114113
Н	6.11189	-0.45833	3.31958	0.124711
Н	8.20186	0.58476	2.45289	0.107599

6.56774	0.65188	-1.50403	0.111445
4.46394	-0.37255	-0.66503	0.126494
-7.53054	0.16919	1.35985	0.124034
-7.49741	2.65814	1.52029	0.108432
-4.68844	2.85848	-1.70528	0.113066
-4.71231	0.37927	-1.89567	0.126377
-8.5891	-0.73515	-1.33421	0.118884
-10.68263	-1.98806	-0.89353	0.110778
-10.64498	-4.02722	0.53743	0.107984
-8.49289	-4.78908	1.53492	0.110361
-6.40643	-3.51415	1.12005	0.118735
9.46343	2.14491	-3.60553	0.105488
11.57878	3.18493	-4.46584	0.108847
13.41736	3.71963	-2.87558	0.10956
13.14891	3.22399	-0.45379	0.110254
11.02999	2.18746	0.37954	0.110178
-4.02191	6.65435	-2.03724	0.106802
-3.98711	9.15768	-1.86746	0.109555
-5.43278	10.29288	-0.18939	0.110175
-6.89718	8.94745	1.30301	0.110701
-6.91396	6.45268	1.11479	0.110717
	6.567744.46394-7.53054-7.49741-4.68844-4.71231-8.5891-10.68263-10.64498-8.49289-6.406439.4634311.5787813.4173613.1489111.02999-4.02191-3.98711-5.43278-6.89718-6.91396	6.56774 0.65188 4.46394 -0.37255 -7.53054 0.16919 -7.49741 2.65814 -4.68844 2.85848 -4.71231 0.37927 -8.5891 -0.73515 -10.68263 -1.98806 -10.64498 -4.02722 -8.49289 -4.78908 -6.40643 -3.51415 9.46343 2.14491 11.57878 3.18493 13.14891 3.22399 11.02999 2.18746 -4.02191 6.65435 -3.98711 9.15768 -5.43278 10.29288 -6.89718 8.94745 -6.91396 6.45268	6.56774 0.65188 -1.50403 4.46394 -0.37255 -0.66503 -7.53054 0.16919 1.35985 -7.49741 2.65814 1.52029 -4.68844 2.85848 -1.70528 -4.71231 0.37927 -1.89567 -8.5891 -0.73515 -1.33421 -10.68263 -1.98806 -0.89353 -10.64498 -4.02722 0.53743 -8.49289 -4.78908 1.53492 -6.40643 -3.51415 1.12005 9.46343 2.14491 -3.60553 11.57878 3.18493 -4.46584 13.14891 3.22399 -0.45379 11.02999 2.18746 0.37954 -4.02191 6.65435 -2.03724 -3.98711 9.15768 -1.86746 -5.43278 10.29288 -0.18939 -6.89718 8.94745 1.30301 -6.91396 6.45268 1.11479

 Table S16. Cartesian coordinates of optimized structure of molecule 7.

Total energy: - 1814.77 Hartrees

	Х	у	Z	Mulliken charges
С	-4.14932	0.51787	-0.0501	0.105822
С	-4.63991	1.81536	-0.31738	-0.070115
С	-3.77943	2.89598	-0.52599	-0.068512
С	-2.40381	2.65455	-0.48525	0.266175
С	-1.8983	1.34655	-0.22845	-0.122436
С	-2.76951	0.28073	0.00117	-0.003809
N	-1.33415	3.55122	-0.65774	-0.535739
С	-0.14878	2.8465	-0.52406	0.439746
С	-0.45442	1.45727	-0.25024	0.091111
N	1.07404	3.33516	-0.61889	-0.373911
С	2.08056	2.40895	-0.43098	0.097249
С	1.79489	1.02332	-0.16172	0.102559
N	0.49775	0.55408	-0.07218	-0.343937
С	-1.42454	4.98004	-0.96873	-0.102973
N	-5.0697	-0.5509	0.16235	-0.599246
С	3.43388	2.82397	-0.50863	-0.070438
С	4.45724	1.91691	-0.33348	-0.081975

C	4.1758	0.54678	-0.05188	0.131679
C	2.86288	0.11463	0.03575	-0.075344
N	5.25507	-0.36346	0.12028	-0.600808
C	-5.13992	-1.73946	-0.5912	0.226304
C	-6.19046	-2.54825	-0.07328	-0.096686
C	-6.46544	-3.7866	-0.66947	-0.054421
C	-5.70362	-4.19776	-1.76487	-0.120413
C	-4.67406	-3.37972	-2.27079	-0.107592
C	-4.37939	-2.14138	-1.69434	-0.080313
C	6.34128	-0.19184	1.00359	0.226444
C	7.21656	-1.30611	0.87394	-0.098912
C	8.37152	-1.37344	1.66443	-0.05258
C	8.63572	-0.34527	2.57148	-0.119735
C	7.75008	0.74239	2.69978	-0.107313
C	6.59155	0.83268	1.92324	-0.080484
C	-1.66997	5.25764	-2.45892	-0.286275
C	-6.06445	-0.59569	1.15854	0.22768
C	-6.77739	-1.82204	1.03893	-0.097195
C	5.42935	-1.58362	-0.56783	0.227669
C	6.63907	-2.18787	-0.12501	-0.098675
C	-6.36574	0.33375	2.16001	-0.082855
C	-7.4088	0.02856	3.03853	-0.107721
C	-8.13252	-1.17512	2.92728	-0.120627
C	-7.81944	-2.1039	1.93277	-0.054466
C	4.63822	-2.17133	-1.56071	-0.07712
C	5.06509	-3.38925	-2.09699	-0.107668
C	6.25287	-4.0076	-1.66009	-0.119178
C	7.0446	-3.41024	-0.67758	-0.053918
H	-5.71257	1.96462	-0.36805	0.126777
H	-4.17885	3.88309	-0.72735	0.120448
Н	-2.38646	-0.70856	0.22239	0.117213
H	-2.22176	5.41374	-0.35393	0.13386
Н	-0.47751	5.42463	-0.6511	0.142066
H	3.63159	3.8675	-0.72479	0.110756
H	5.49098	2.23032	-0.42201	0.130527
H	2.61953	-0.91478	0.26832	0.123209
H	-7.26241	-4.41656	-0.28654	0.095442
H	-5.90563	-5.15502	-2.23406	0.101771
Н	-4.09719	-3.71561	-3.12663	0.104458
Н	-3.5889	-1.51592	-2.09259	0.113703
Н	9.04892	-2.21722	1.57713	0.096143
Н	9.52702	-0.38567	3.18887	0.102387
Н	7.96651	1.52548	3.41946	0.104786
Н	5.90903	1.66607	2.0412	0.116338

Н	-1.7391	6.33716	-2.63445	0.119431
Н	-0.84632	4.86416	-3.06276	0.122347
Н	-2.60068	4.79475	-2.80405	0.115323
Н	-5.80678	1.25719	2.25869	0.111624
Н	-7.66206	0.73306	3.8245	0.10388
Н	-8.9375	-1.38185	3.62483	0.101708
Н	-8.3736	-3.03428	1.85577	0.095636
Н	3.7258	-1.70158	-1.90796	0.118059
Н	4.46677	-3.86593	-2.86688	0.104922
Н	6.55427	-4.955	-2.09462	0.102263
Н	7.96435	-3.88416	-0.34895	0.095871

 Table S17. Cartesian coordinates of optimized structure of molecule 8.

Total energy: -1965.20 Hartrees

	X	у	Z	Mulliken charges
С	4.15233	0.46149	-0.1657	-0.041355
С	4.64117	1.71862	-0.5819	-0.016825
С	3.77993	2.76353	-0.92754	-0.063722
С	2.40474	2.52587	-0.8496	0.265063
С	1.89912	1.26042	-0.42841	-0.109319
С	2.77434	0.22731	-0.08675	0.038516
N	1.33517	3.38729	-1.14993	-0.535359
C	0.14961	2.70743	-0.9246	0.440302
С	0.45532	1.36531	-0.4711	0.092879
N	-1.07203	3.17709	-1.094	-0.373513
C	-2.08069	2.27835	-0.80367	0.097365
C	-1.79368	0.94186	-0.34944	0.116366
N	-0.49733	0.49157	-0.18584	-0.341015
С	1.42527	4.78349	-1.5875	-0.10326
N	5.08489	-0.57839	0.17493	-0.573515
C	-3.43263	2.67735	-0.95539	-0.064505
C	-4.45636	1.79626	-0.67264	-0.021498
C	-4.17394	0.47572	-0.21771	-0.033635
C	-2.86489	0.06073	-0.05648	-0.017139
N	-5.26446	-0.41554	0.06866	-0.570876
C	5.56173	-1.46279	-0.82651	0.246127
C	5.54423	-0.71551	1.51003	0.246577
С	-5.94191	-0.32736	1.31179	0.246463
С	6.50174	-1.70411	1.81458	0.141833
C	6.9838	-1.87733	3.10482	-0.112542
C	6.51866	-1.05599	4.14114	-0.109939
C	5.57053	-0.07081	3.86012	-0.110846

C	5.08585	0.09909	2 55585	-0 11029
C	5.12038	-1.40848	-2.15681	-0.110326
C	5.6225	-2.30082	-3.11414	-0.110903
C	6.57081	-3.26156	-2.75888	-0.109934
C	7.0182	-3.32755	-1.43206	-0.112476
C	6.51911	-2.44039	-0.48812	0.142187
C	-5.54381	0.55216	2.32951	-0.11049
C	-6.24482	0.60688	3.54207	-0.110898
C	-7.34923	-0.21848	3.76005	-0.109642
C	-7.75219	-1.10717	2.75373	-0.112605
C	-7.05624	-1.15573	1.55353	0.142174
C	-5.698	-1.35368	-0.90426	0.249138
C	-6.81407	-2.16899	-0.62798	0.140344
C	-7.28028	-3.10025	-1.54604	-0.112564
C	-6.6395	-3.24276	-2.78432	-0.109601
C	-5.53559	-2.44094	-3.07921	-0.110703
C	-5.06763	-1.50352	-2.14818	-0.109561
С	1.6632	5.76235	-0.42891	-0.286222
0	7.01815	-2.56026	0.82309	-0.384585
0	-7.5149	-2.0734	0.5896	-0.384133
Н	5.71477	1.86387	-0.6297	0.113049
Н	4.17526	3.722	-1.24284	0.122068
Н	2.39841	-0.73817	0.23164	0.104815
Н	2.2258	4.85678	-2.33249	0.135149
Н	0.48023	5.00998	-2.08835	0.143005
Н	-3.62696	3.68577	-1.30169	0.111793
Н	-5.49253	2.09281	-0.7915	0.112076
Н	-2.62996	-0.93829	0.29108	0.108514
Н	7.71891	-2.65463	3.2772	0.113062
Н	6.89553	-1.19115	5.14875	0.10465
Н	5.19839	0.57267	4.65034	0.103558
Н	4.34854	0.8647	2.34985	0.122639
Н	4.38277	-0.66932	-2.4427	0.122834
Н	5.26357	-2.23692	-4.13594	0.103568
Н	6.96125	-3.95401	-3.4962	0.104636
Н	7.75247	-4.05729	-1.11173	0.113084
Н	-4.68431	1.19203	2.17463	0.124093
Н	-5.91622	1.29713	4.31181	0.103747
Н	-7.89355	-0.17975	4.69695	0.104605
Н	-8.60093	-1.76876	2.88095	0.113081
Н	-8.14229	-3.69865	-1.27569	0.113049
Н	-7.00376	-3.96988	-3.50137	0.104589
Н	-5.02832	-2.53616	-4.03342	0.10387
Н	-4.20977	-0.88845	-2.38828	0.124232

Н	1.72987	6.78743	-0.8104	0.120481
Н	0.83729	5.71657	0.28773	0.122636
Н	2.59316	5.5348	0.10313	0.115574

 Table S18. Cartesian coordinates of optimized structure of molecule 9.

Total energy: -2611.15 Hartrees

9	x	V	7	Mulliken charges
C C	4 16103	0 56422	-0 17349	-0.015889
C	4 64182	1 85904	-0.46125	-0.017113
C	3 7765	2.93278	-0.68771	-0.067827
C	2 40232	2.68719	-0 62247	0.2683
C	1 90286	1 38321	-0 33395	-0.097194
C	2 78273	0.3218	-0.10956	-0.017762
N	1 32833	3 5733	-0.81814	-0 535868
C	0 14619	2 87032	-0.65411	0.439987
C	0.45883	1 48771	-0 35144	0.094259
N	-1 07801	3 35252	-0 75632	-0.373162
C	-2 08229	2 42522	-0 55329	0.097333
	_1 78824	1.0/816	-0.25159	0.126363
	-0.48961	0.58557	-0.15209	-0.342685
C III	1 41272	5.00815	-0.13207	-0.342083
	5 12347	0.48020	0.04966	0.562131
C N	3 43662	-0.48929	0.64210	0.060263
	-3.43002	2.03417	-0.04219	-0.009203
	-4.43349	0.56297	-0.44230	-0.019033
	-4.10/93	0.30287	-0.143/9	-0.011974
	-2.85501	0.13591	-0.05139	-0.063872
N	-5.2//12	-0.34006	0.05276	-0.560584
C	5.48979	-1.32671	-1.04/65	0.292931
C	5.50527	-0.79634	1.39094	0.293861
C	-5.75294	-1.09413	-1.0628	0.290608
C	6.72367	-1.44583	1.66674	-0.263743
C	7.08241	-1.78611	2.97197	-0.073293
C	6.25425	-1.44029	4.04501	-0.097065
C	5.05632	-0.76733	3.79011	-0.113267
C	4.67828	-0.45961	2.48024	-0.089464
C	4.64741	-1.47188	-2.16709	-0.089019
C	5.01008	-2.29639	-3.23568	-0.113294
C	6.20781	-3.01568	-3.20407	-0.096883
C	7.05092	-2.88589	-2.09541	-0.073477
C	6.70711	-2.03411	-1.04449	-0.263213
C	-4.91871	-1.37625	-2.16168	-0.085695
С	-5.39077	-2.11882	-3.24754	-0.113044

C	-6.69513	-2.62067	-3.25226	-0.096503
С	-7.53163	-2.35487	-2.16295	-0.073542
С	-7.07346	-1.58107	-1.09553	-0.262089
С	-5.73502	-0.59067	1.38205	0.292572
С	-7.05365	-1.02213	1.62185	-0.262737
C	-7.49604	-1.30972	2.91398	-0.073444
C	-6.64543	-1.12442	4.00894	-0.096608
С	-5.34304	-0.66752	3.78943	-0.113211
C	-4.88674	-0.41616	2.49251	-0.086548
C	1.66313	5.86001	0.14596	-0.286467
S	7.92241	-1.75138	0.30615	0.173167
S	-8.2536	-1.10178	0.23065	0.173623
Н	5.71485	2.00836	-0.50279	0.11655
Н	4.16928	3.91926	-0.9044	0.12192
Н	2.40447	-0.67071	0.10881	0.111114
Н	2.20501	5.16064	-1.84826	0.135192
Н	0.46215	5.28502	-1.57011	0.142853
Н	-3.63733	3.8745	-0.87029	0.111732
Н	-5.49445	2.22736	-0.50852	0.114869
Н	-2.60898	-0.89562	0.17303	0.114366
Н	8.01976	-2.3043	3.14434	0.113137
Н	6.54465	-1.69133	5.05933	0.105978
Н	4.40187	-0.48692	4.60907	0.106694
Н	3.73982	0.04882	2.30246	0.126321
Н	3.70917	-0.93413	-2.20403	0.126341
Н	4.34401	-2.38098	-4.08822	0.106758
Н	6.48654	-3.66554	-4.02638	0.106013
Н	7.98806	-3.43042	-2.04935	0.113165
Н	-3.90057	-1.00982	-2.16778	0.126572
Н	-4.72769	-2.31211	-4.08452	0.106801
Н	-7.06045	-3.20752	-4.08795	0.106002
Н	-8.5492	-2.73047	-2.14512	0.113107
Н	-8.51256	-1.65967	3.05904	0.113137
Н	-6.99844	-1.33209	5.01317	0.105956
Н	-4.66916	-0.51445	4.62611	0.106729
Н	-3.87011	-0.07802	2.34122	0.126896
Н	1.72516	6.91956	-0.12668	0.120269
Н	0.84507	5.73835	0.86282	0.122482
Н	2.59902	5.57945	0.64088	0.115914

15. Vertical electronic Transition in implicit water of 1–9

Molecule 1

Wavelength (nm)	Oscillator strength	Assignments	
426.52	0.0418	$HOMO \rightarrow LUMO$	(69.90 %)
349.83	0.0029	$HOMO - 4 \rightarrow LUMO$	(70.13 %)
346.62	0.4875	HOMO $-3 \rightarrow$ LUMO	(13.03 %)
		HOMO $-2 \rightarrow$ LUMO	(66.83 %)

Molecule 2

Wavelength (nm)	Oscillator strength	Assignments	
544.63	0.0396	$HOMO \rightarrow LUMO$	(70.22%)
490.11	0.2049	HOMO $-1 \rightarrow$ LUMO	(70.18%)
359.65	0.0310	HOMO $-2 \rightarrow$ LUMO	(70.18%)
		$HOMO \rightarrow LUMO +1$	(70.18%)

Molecule 3

Wavelength (nm)	Oscillator strength	Assignments	
530.70	0.0295	$HOMO \rightarrow LUMO$	(70.18%)
471.98	0.2476	HOMO $-1 \rightarrow$ LUMO	(70.11%)
407.07	0.0828	HOMO $-1 \rightarrow$ LUMO $+2$	(21.07%)
		$HOMO \rightarrow LUMO +2$	(66.20%)

Molecule 4

Wavelength (nm)	Oscillator strength	Assignments	
593.81	0.0255	$HOMO \rightarrow LUMO$	(70.32 %)
531.91	0.1945	HOMO $-1 \rightarrow$ LUMO	(70.29 %)
374.55	0.1148	HOMO $-2 \rightarrow$ LUMO	(50.22 %)
		HOMO \rightarrow LUMO +1	(46.92 %)

Molecule 5

Wavelength (nm)	Oscillator strength	Assignments	
505.48	0.1225	$HOMO \rightarrow LUMO$	(57.50 %)
		$HOMO \rightarrow LUMO + 1$	(13.45 %)
		$HOMO \rightarrow LUMO +2$	(37.80 %)
467.68	0.2818	$HOMO \rightarrow LUMO + 2$	(51.07 %)
464.26	0.2548	HOMO $-1 \rightarrow$ LUMO $+2$	(11.78 %)
		$HOMO \rightarrow LUMO +1$	(66.97 %)

Molecule 6

Wavelength (nm)	Oscillator strength	Assignments	
543.01	0.1186	$HOMO \rightarrow LUMO$	(58.11%)
		HOMO \rightarrow LUMO +2	(38.41 %)
512.32	0.6367	HOMO $-1 \rightarrow$ LUMO	(40.05 %)
		$HOMO \rightarrow LUMO$	(12.09 %)
		$HOMO \rightarrow LUMO +1$	(49.65 %)
500.29	0.7905	$HOMO \rightarrow LUMO + 1$	(39.08%)
		HOMO \rightarrow LUMO +2	(41.06 %)

Molecule 7

Wavelength (nm)	Oscillator strength	Assignments	
490.61	0.0460	$HOMO \rightarrow LUMO$	(70.14 %)
464.46	0.1068	HOMO $-1 \rightarrow$ LUMO	(70.32 %)
397.90	0.0003	HOMO $-3 \rightarrow$ LUMO	(70.33 %)

Molecule 8

Wavelength (nm)	Oscillator strength	Assignments	
644.06	0.0062	$HOMO \rightarrow LUMO$	(70.41%)
631.13	0.0002	HOMO $-1 \rightarrow$ LUMO	(70.43 %)
407.87	0.454	HOMO $-2 \rightarrow LUMO$	(69.68 %)

Molecule 9

Wavelength (nm)	Oscillator strength	Assignments	
544.70	0.0005	$HOMO \rightarrow LUMO$	(70.27%)
535.73	0.0001	HOMO $-1 \rightarrow$ LUMO	(70.32 %)
411.04	0.0437	HOMO $-2 \rightarrow$ LUMO	(69.82 %)