Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting information

Mastering the coating of metal oxide nanoparticles and surfaces through phosphonated dendrons

Dinh Vu NGUYEN,^[a] Ludivine HUGONI,^[b] Miriam FILIPPI,^[c] Francis PERTON,^[a] Da Shi, ^[d] Emilie VOIRIN,^[a] Laura POWER,^[c] Geoffrey COTIN,^[a] Marie-Pierre Krafft,^[d] Arnaud SCHERBERICH,^[c] Philippe LAVAL,^[b] Sylvie BEGIN-COLIN,^[a] Delphine FELDER-FLESCH^[a]

^[a] Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS UMR CNRS UNISTRA 7504 23 rue du loess BP 43 67034 Strasbourg cedex 2, France

> ^[b] INSERM UMR 1121, Biomaterials and Bioengineering Université de Strasbourg, 11 rue Humann, 67000 Strasbourg, France

^[c] Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031, Basel, Switzerland ^[d] University of Strasbourg, Institut Charles Sadron (UPR 22, CNRS)

23 rue du loess BP 43 67034 Strasbourg cedex 2, France

delphine.felder@ipcms.unistra.fr

Supporting Information

Table of contents	
General methods	S4
Preparation of starting building blocks	S5
Part 1: Development of dendritic coating for plane surfaces	S13
Part 2: Development of dendritic coating for metallic oxide nanoparticles	S37
Part 3: Development of dendritic coating for the development of hybrid microbubbles	S45
Part 4: General procedure for the deprotection of phosphonate dendrons	S53
REFERENCES	S66
NMR Spectra	S67
Functionnalization of nanoparticles	S188

General methods

Reactions under anhydrous conditions were realized in flame-dried flasks and under an atmosphere of argon. Dichloromethane (CH₂Cl₂), tetrahydrofuran (THF), acetonitrile (CH₃CN), *N*,*N*-dimethylformamide (DMF), dimethylsulfoxide (DMSO) (AcroSealTM, Acros) were dried over 4 Å molecular sieves. Other reagents were obtained from commercial suppliers and used as received.

Thin-layer chromatography (TLC) was performed using 0.25 mm Merck silica plates (60F-254), visualized with a UV lamp (254 nm), and *p*-anisaldehyde-sulfuric acid (H_2SO_4)-acetic acid (AcOH) in ethanol (EtOH), KMnO_4-K_2CO_3 in water, phosphomolybdic acid-Ce(SO_4)_2 in EtOH and heat as developing agents. NMR spectra were recorded with a Bruker Avance instrument.

¹H NMR spectra were recorded at 300 or 500 MHz and data are reported as (chemical shift [ppm] relative to tetramethylsilane, multiplicity, coupling constant [Hz], integration). ¹³C NMR spectra were recorded at 125 MHz and data are reported as (chemical shift [ppm] relative to the deuterated solvent signal). ³¹P NMR spectra were recorded at 202 MHz and data are reported as (chemical shift [ppm] relative to the deuterated solvent signal). ³¹P NMR spectra were recorded at 202 MHz and data are reported as (chemical shift [ppm] relative to the deuterated solvent signal). ¹⁹F NMR spectra were recorded at 282 MHz and data are reported as (chemical shift [ppm] relative to the deuterated solvent signal). ¹⁹F NMR spectra were recorded at 282 MHz and data are reported as (chemical shift [ppm] relative to the deuterated solvent signal). The following abbreviations were used to explain multiplicities: s = singulet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad).

Flash chromatography was performed on silica gel (Sigma Aldrich, 230-400 mesh) or C_{18} -reversed phase silica gel (Sigma Aldrich, 90 Å pore size).

MALDI-TOF mass spectra were performed at Laboratoire de Spectrométrie de Masse BioOrganique, Ecole européeenne d'Ingénieurs de chimie, polymères et matériaux. Preparation of starting building blocks

To a solution of 2-Bromoethanol (10.0 mL, 136.9 mmol) in H_2O (20.0 mL) was added sodium azide (14.7 g, 169.3 mmol, 1.2 equiv.). The resulting solution was heated to 80 °C for 16 h, cooled to RT, diluted with water and EtOAc. The aqueous layer was extracted with EtOAc (three times), the combined organic layers were washed with brine, dried over Na_2SO_4 , filtered and concentrated und reduced pressure to afford 8.88 g (102.0 mmol, 75%) of the title compound **14**.

Physical state: colorless liquid.

¹H NMR (300 MHz, CDCl₃): δ 3.78 (dd, J = 10.0, 5.4 Hz, 2H), 3.44 (t, J = 4.7 Hz, 2H), 2.02 (t, J = 5.4 Hz, 1H) ppm

TLC: R_f = 0.3 (CH₂Cl₂/MeOH 98/2, KMnO₄).

Spectral data matches the literature.^[1]

To a solution of **14** (8.88 g, 102.0 mmol) in CH_2Cl_2 (300.0 mL) were successively added tosyl chloride (TsCl) (23.3 g, 122.4 mmol, 1.2 equiv.) and triethylamine (Et₃N) (22.0 mL, 157.8 mmol, 1.5 equiv.). The resulting solution was stirred at RT for 16 h, diluted with water and CH_2Cl_2 . The aqueous layer was extracted with CH_2Cl_2 (three times), the combined organic layers were washed with brine, dried over Na_2SO_4 , filtered and concentrated und reduced pressure. Purification by chromatography on silica gel (Cyclohexane/Toluene 1/1 then Cyclohexane/EtOAc 9/1 to 85/15 to 0/1) afforded 18.7 g (77.6 mmol, 76%) of the title compound **15**.

Physical state: colorless oil.

¹H NMR (300 MHz, CDCl₃): δ 7.82 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 2H), 4.16 (t, *J* = 4.8 Hz, 2H), 3.48 (t, *J* = 4.8 Hz, 2H), 2.46 (s, 3H) ppm

TLC: R_f = 0.4 (Cyclohexane/EtOAc 7/3, phosphomolybdic acid).

Spectral data matches the literature.^[1]

To a solution of **16** (3.95 g, 10.0 mmol) in DMSO (30.0 mL) were successively added KOH (840.0 mg, 15.0 mmol, 1.5 equiv.), KI (83.0 mg, 0.5 mmol, 0.05 equiv.) and **15** (2.9 g, 12.0 mmol, 1.2 equiv.). The resulting solution was stirred at RT for 16 h, quenched with an aqueous solution of HCl 2N (10.0 mL). The aqueous layer was extracted with EtOAc (three times), the combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated und reduced pressure. Purification by chromatography on silica gel (CH₂Cl₂/MeOH 96/4 to 9/1 to 7/3) afforded 3.79 g (8.19 mmol, 82%) of the title compound **17**.

Physical state: yellow oil.

¹H NMR (500 MHz, CDCl₃): δ 7.82 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 4.14 (t, J = 5.2 Hz, 2H), 4.02 (qt, J = 7.0 Hz, 8H), 3.56 (t, J = 4.7 Hz, 2H), 3.09 (d, ² J_{P-H} = 21.5 Hz, 4H), 1.25 (t, J = 6.9 Hz, 12H) ppm

¹³**C NMR (125 MHz, CDCl₃):** δ 158.3, 133.2, (t, ²*J*_{*C-P*} = 10.7 Hz), 124.3 (t, ³*J*_{*C-P*} = 6.4 Hz), 114.6 (t, ³*J*_{*C-P*} = 4.6 Hz), 66.9, 62.1 (d, ²*J*_{*C-P*} = 6.7 Hz), 50.1, 33.6 (d, ¹*J*_{*C-P*} = 138.5 Hz), 16.4 (d, ³*J*_{*C-P*} = 6.0 Hz) ppm

³¹P NMR (202 MHz, CDCl₃): δ 26.0 ppm

MALDI-TOF: m/z calcd for $C_{18}H_{32}N_3O_7P_2$ [M+H]⁺ 464.172, found 464.162

TLC: R_f = 0.4 (Cyclohexane/EtOAc 7/3, phosphomolybdic acid).

General procedure for synthesis of OEG 18-21 and 22-25

Installation of tosylate leaving group

To a solution of **OEG-OH** in CH_2Cl_2 (0.1 M) were successively added TsCl (1.5 equiv.) and Et_3N (3.0 equiv.). The resulting solution was stirred at RT for 16 h, then concentrated under reduced pressure. The crude residue was purified by chromatography on silica gel to afford the corresponding tosylate OEG.

8.9 g isolated (24.8 mmol, 82%)

Eluents: 100% EtOAc.

Physical state: yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 7.80 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 2H), 4.16 (t, *J* = 4.6 Hz, 2H), 3.70–3.52 (m, 15H), 3.37 (s, 3H), 2.45 (s, 3H) ppm

TLC: R_f = 0.4 (100% EtOAc, phosphomolybdic acid).

Spectral data matches the literature.^[2]

℃O₂tBu

19

6.9 g isolated (14.5 mmol, 81%)

Eluents: CH₂Cl₂/MeOH 98/2 to 9/1.

Physical state: yellow oil.

¹**H NMR (300 MHz, CDCl₃):** δ 7.79 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.2 Hz, 2H), 4.15 (t, *J* = 4.5 Hz, 2H), 3.74–3.57 (m, 16H), 2.49 (t, *J* = 6.5 Hz, 2H), 2.44 (s, 3H), 1.44 (s, 9H) ppm

TLC: R_f = 0.5 (Cyclohexane/EtOAc 3/7, phosphomolybdic acid).

Spectral data matches the literature.^[3]

1.6 g isolated (2.6 mmol, 99%)

Eluents: CH₂Cl₂/MeOH 9/1.

Physical state: yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 7.78 (d, *J* = 7.4 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 4.14 (t, *J* = 4.8 Hz, 2H), 3.67 (t, *J* = 4.8 Hz, 2H), 3.64—3.52 (m, 30H), 3.36 (s, 3H), 2.43 (s, 3H) ppm

TLC: $R_f = 0.3$ (CH₂Cl₂/MeOH 94/6, phosphomolybdic acid).

Spectral data matches the literature.^[4]

$$TsO(-0) CO_2 tBu$$

5.2 g isolated (8.0 mmol, 99%)

Eluents: CH₂Cl₂/MeOH 92/8.

Physical state: yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 7.79 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.2 Hz, 2H), 4.15 (t, *J* = 4.6 Hz, 2H), 3.72-3.57 (m, 32H), 2.49 (t, *J* = 6.5 Hz, 2H), 2.44 (s, 3H), 1.44 (s, 3H) ppm

TLC: $R_f = 0.4$ (CH₂Cl₂/MeOH 92/8, phosphomolybdic acid).

Spectral data matches the literature.^[2]

Displacement of tosylate by potassium iodide (KI)

To a solution of tosylate OEG in Acetone (0.1 M) was added KI (2.0 equiv.). The yellow solution was heated to reflux for 16 h then cooled to RT. Acetone was removed and the crude residue was suspended in CH_2Cl_2 . The white precipitate was filtered over Celite, the organic filtrate was washed with an aqueous solution of $Na_2S_2O_3$ (2.0 M), the aqueous layer was extracted with CH_2Cl_2 (three times), the combined organic layers were washed with brine, dried over Na_2SO_4 , filtered and concentrated under reduced pressure to provide the corresponding iodide OEG.

2.98 g isolated (9.4 mmol, 94%)

Physical state: yellow oil.

¹**H NMR (300 MHz, CDCl₃):** δ 3.76 (t, *J* = 6.8 Hz, 2H), 3.68—3.64 (m, 10H), 3.55 (t, *J* = 5.2 Hz, 2H), 3.38 (s, 3H), 3.26 (t, *J* = 7.1 Hz, 2H) ppm

TLC: R_f = 0.4 (100% EtOAc, phosphomolybdic acid).

Spectral data matches the literature.^[5]

2.5 g isolated (5.8 mmol, 96%)

Physical state: yellow oil.

¹**H NMR (300 MHz, CDCl₃):** δ 3.74 (t, *J* = 6.8 Hz, 2H), 3.70 (t, *J* = 6.5 Hz, 2H), 3.65—3.59 (m, 12H), 3.25 (t, *J* = 7.2 Hz, 2H), 2.49 (t, *J* = 6.5 Hz, 2H), 1.43 (s, 9H) ppm

TLC: R_f = 0.8 (100% EtOAc, phosphomolybdic acid).

Spectral data matches the literature.^[6]

439.3 mg isolated (0.89 mmol, 89%)

Physical state: yellow oil.

¹**H NMR (300 MHz, CDCl₃):** δ 3.76 (t, *J* = 6.7 Hz, 2H), 3.67−3.64 (m, 29H), 3.55 (t, *J* = 5.0 Hz, 2H), 3.39 (s, 3H), 3.27 (t, *J* = 7.0 Hz, 2H) ppm

TLC: $R_f = 0.3$ (CH₂Cl₂/MeOH 96/4, phosphomolybdic acid).

Spectral data matches the literature.^[4]

1.23 g isolated (2.0 mmol, 99%)

Physical state: yellow oil.

¹H NMR (500 MHz, CDCl₃): δ 3.77 (t, *J* = 6.6 Hz, 2H), 3.72 (t, *J* = 6.5 Hz, 2H), 3.67—3.60 (m, 27H), 3.27 (t, *J* = 7.0 Hz, 2H), 2.51 (t, *J* = 6.4 Hz, 2H), 1.46 (s, 9H) ppm

¹³C NMR (125 MHz, CDCl₃): δ 170.9, 80.5, 72.0, 70.6, 70.5 (several peaks), 70.3, 70.2, 66.9, 36.2, 28.1,
2.9 ppm

TLC: R_f = 0.4 (CH₂Cl₂/MeOH 94/6, phosphomolybdic acid).

Part 1: Development of dendritic coating for plane surfaces

To a solution of **17** (2962.7 mg, 6.4 mmol, 1.1 equiv.) in EtOAc (60.0 mL) was added Pd/C 10% (680.4 mg, 0.6 mmol, 0.1 equiv.). The heterogeneous mixture was evacuated and backfilled with hydrogen (balloon) five times, then vigorously stirred at RT for 3 h, the catalyst was next filtered over Celite and the crude product was concentrated under reduced pressure (*Caution: the water bath must be kept at* **ROOM TEMPERATURE**, a heating water bath will lead to decomposition of the crude primary amine). In a separate flask, **26**^[2] (3724.0 mg, 5.8 mmol) was dissolved in CH₂Cl₂ (16.0 mL) before (COCl)₂ (1.5 mL, 17.4 mmol, 3.0 equiv.) and DMF (4 drops) were added. The yellow solution was stirred at RT for 3 h, then concentrated under reduced pressure to remove volatiles, dissolved in CH₂Cl₂ (40.0 mL) before a solution of the crude primary amine above in CH₂Cl₂ (20.0 mL) and DIPEA (2.3 mL, 13.3 mmol, 2.3 equiv.) were successively added. The yellow solution was stirred at RT for 16 h, then diluted with CH₂Cl₂ and brine. The aqueous layer was extracted with CH₂Cl₂ (five times), the combined organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification by chromatography on silica gel (CH₂Cl₂/MeOH/EtOAc 80/8/12 to 6/4/0) afforded 4.9 g (4.6 mmol, 79%) of the title compound **27**.

Physical state: yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 7.49 (d, *J* = 7.9 Hz, 2H), 7.36—7.29 (m, 3H), 7.08 (s, 2H), 6.82—6.78 (m, 3H), 5.09 (s, 2h), 4.19 (t, *J* = 4.7 Hz, 4H), 4.13 (t, *J* = 4.8 Hz, 2H), 4.02 (qt, *J* = 7.2 Hz, 8H), 3.86—3.80 (m, 6H), 3.71—3.48 (m, 24H), 3.35 (s, 6H), 3.08 (d, ${}^{2}J_{P-H}$ = 22.0 Hz, 4H), 1.25 (t, *J* = 7.0 Hz, 12H) ppm

TLC: R_f = 0.4 (CH₂Cl₂/MeOH 94/6, KMnO₄).

Spectral data matches the literature.^[2]

To a solution of **27** (4871.1 mg, 4.6 mmol) in EtOAc (40.0 mL) was added Pd/C 10% (489.0 mg, 0.46 mmol, 0.1 equiv.). The heterogeneous mixture was evacuated and backfilled with hydrogen (balloon) five times, then vigorously stirred at RT for 5 h. The catalyst was next filtered over Celite, the crude product was concentrated under reduced pressure, then dissolved in Acetone (40.0 mL) before K_2CO_3 (952.6 mg, 6.9 mmol, 1.5 equiv.), KI (76.3 mg, 0.46 mmol, 0.1 equiv.) and **20** (3149.5 mg, 4.8 mmol, 1.05 equiv.) were added. The resulting solution was heated to reflux for 16 h, cooled to RT. The solvent was removed, the crude product was suspended in CH₂Cl₂, filtered over Celite and the crude product was concentrated under reduced pressure. Purification by chromatography on silica gel (CH₂Cl₂/MeOH/EtOAc 80/8/12 to 8/2/0) afforded 6.4 g (4.4 mmol, 96%) of the title compound **28**.

Physical state: yellow oil.

¹H NMR (500 MHz, CDCl₃): δ 7.11 (s, 2H), 6.88 (brs, 1H), 6.82 (s, 1H), 6.78 (d, J = 2.2 Hz, 1H), 4.22 (t, J = 4.7 Hz, 4H), 4.14 (t, J = 4.9 Hz, 2H), 4.02 (qt, J = 7.4 Hz, 8H), 3.85 (t, J = 5.1 Hz, 4H), 3.82—3.77 (m, 4H), 3.72—3.60 (m, 56H), 3.54—3.52 (m, 4H), 3.36 (s, 6H), 3.09 (d, ${}^{2}J_{P-H} = 22.3$ Hz, 4H), 2.50 (t, J = 6.2 Hz, 2H), 1.44 (s, 9H), 1.25 (t, J = 7.2 Hz, 12H) ppm

TLC: R_f = 0.3 (CH₂Cl₂/MeOH 92/8, KMnO₄).

Spectral data matches the literature.^[2]

To a solution of **27** (577.3 mg, 0.54 mmol) in EtOAc (20.0 mL) was added Pd/C 10% (58.0 mg, 1.0 mmol, 0.1 equiv.). The heterogeneous mixture was evacuated and backfilled with hydrogen (balloon) five times, then vigorously stirred at RT for 5 h. The catalyst was next filtered over Celite, the crude product was concentrated under reduced pressure, then dissolved in Acetone (20.0 mL) before K_2CO_3 (112.9 mg, 0.82 mmol, 1.5 equiv.), KI (9.0 mg, 0.05 mmol, 0.1 equiv.) and **19** (285.5 mg, 0.6 mmol, 1.1 equiv.) were added. The resulting solution was heated to reflux for 16 h, cooled to RT. The solvent was removed, the crude product was suspended in CH₂Cl₂, filtered over Celite and the crude product was concentrated under reduced pressure. Purification by chromatography on silica gel (CH₂Cl₂/MeOH/EtOAc 90/6/4 to 8/2/0) afforded 547.2 mg (0.43 mmol, 79%) of the title compound **29**.

Physical state: yellow oil.

¹H NMR (500 MHz, CDCl₃): δ 7.11 (s, 2H), 6.88 (brs, 1H), 6.82 (s, 1H), 6.78 (d, J = 2.2 Hz, 1H), 4.22 (t, J = 4.7 Hz, 4H), 4.14 (t, J = 4.9 Hz, 2H), 4.02 (qt, J = 7.4 Hz, 8H), 3.85 (t, J = 5.1 Hz, 4H), 3.82—3.77 (m, 4H), 3.72—3.60 (m, 56H), 3.54—3.52 (m, 4H), 3.36 (s, 6H), 3.09 (d, ² $_{J_{P-H}} = 22.3$ Hz, 4H), 2.50 (t, J = 6.2 Hz, 2H), 1.44 (s, 9H), 1.25 (t, J = 7.2 Hz, 12H) ppm

¹³**C NMR (125 MHz, CDCl₃):** δ 170.9, 167.2, 152.4, 133.3, 129.5, 114.6, 107.3, 80.5, 72.3, 71.9, 70.6— 70.5 (several peaks), 70.3, 69.7, 69.1, 66.9, 66.7, 62.1 (d, ²*J*_{*C*-*P*} = 6.6 Hz), 59.0, 39.5, 36.2, 33.6 (d, ¹*J*_{*C*-*P*} = 138.4 Hz), 28.1, 16.4 (d, ³*J*_{*C*-*P*} = 5.4 Hz) ppm

³¹P NMR (202 MHz, CDCl₃): δ 26.0 ppm

MALDI-TOF: m/z calcd for C₅₈H₁₀₁NO₂₅P₂Na [M+Na]⁺ 1296.595, found 1296.590

TLC: R_f = 0.3 (CH₂Cl₂/MeOH 94/6, KMnO₄).

To a solution of Methyl gallate (1.8 g, 9.8 mmol) in Acetone (50.0 mL) were successively added K_2CO_3 (6.1 g, 44.1 mmol, 4.5 equiv.) then **18** (11.2 g, 30.9 mmol, 3.15 equiv.). The resulting solution was heated to reflux for 72 h, cooled to RT. The solvent was removed, then the residue was suspended in CH_2Cl_2 , filtered over Celite and the crude product was concentrated under reduced pressure. Purification by chromatography on silica gel (100% EtOAc then $CH_2Cl_2/MeOH$ 95/5 to 7/3) afforded 6.5 g (8.6 mmol, 87%) of the title compound **30**.

Physical state: brown oil.

¹**H NMR (500 MHz, CDCl₃):** δ 7.27 (d, *J* = 2.0 Hz, 2H), 4.14 (t, *J* = 4.5 Hz, 2H), 4.12 (t, *J* = 5.3 Hz, 4H), 3.81 (s, 3H), 3.79 (t, *J* = 5.1 Hz, 2H), 3.72 (t, *J* = 4.8 Hz, 2H), 3.65—3.55 (m, 32H), 3.48—3.45 (m, 6H), 3.31 (s, 3H), 3.30 (s, 6H) ppm

¹³C NMR (125 MHz, CDCl₃): δ 166.5, 152.2, 142.5, 124.9, 109.0, 72.4, 71.9, 70.8, 70.6—70.5 (several peaks), 69.6, 68.8, 59.0, 52.1 ppm

MALDI-TOF: m/z calcd for $C_{35}H_{62}O_{17}Na$ [M+Na]⁺ 777.392, found 777.388

TLC: $R_f = 0.5$ (CH₂Cl₂/MeOH 95/5, phosphomolybdic acid).

To a solution of **30** (5.1 g, 6.9 mmol) in MeOH (18.0 mL) and H₂O (2.0 mL) at RT was added NaOH (1.4 g, 34.5 mmol, 5.0 equiv.). The yellow solution was stirred at RT for 16h, then MeOH was removed. The crude product was next dissolved in CH_2Cl_2 (30.0 mL) and an aqueous solution of HCl 2N (30.0 mL), stirred at RT for 15 min then poured into a separatory funnel. The aqueous layer was extracted with CH_2Cl_2 (five times), the combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford 5.1 g (6.8 mmol, 99%) of the title compound **31**.

Physical state: yellow oil.

¹H NMR (500 MHz, CDCl₃): δ 7.37 (d, *J* = 2.5 Hz, 2H), 4.23 (t, *J* = 4.7 Hz, 2H), 4.21 (t, *J* = 4.9 Hz, 4H), 3.85 (t, *J* = 4.8 Hz, 4H), 3.79 (t, *J* = 4.9 Hz, 2H), 3.74—3.62 (m, 31H), 3.56—3.53 (m, 6H), 3.38 (s, 6H), 3.37 (s, 3H) ppm

¹³C NMR (125 MHz, CDCl₃): δ 169.6, 152.3, 143.1, 124.3, 109.8, 72.5, 72.4, 71.9, 70.8, 70.6—70.5 (several peaks), 70.4, 70.3, 69.7, 68.9, 59.0, 58.9 ppm

MALDI-TOF: m/z calcd for C₃₄H₅₉O₁₇ [M-H]⁺ 739.385, found 739.375

TLC: R_f = 0.2 (CH₂Cl₂/MeOH 95/5, phosphomolybdic acid).

To a solution of **17** (101.9 mg, 0.22 mmol, 1.1 equiv.) in EtOAc (4.0 mL) was added Pd/C 10% (21.3 mg, 0.02 mmol, 0. 1 equiv.). The heterogeneous mixture was evacuated and backfilled with hydrogen (balloon) five times, then vigorously stirred at RT for 3 h, the catalyst was next filtered over Celite and the crude product was concentrated under reduced pressure (*Caution: the water bath must be kept at* **ROOM TEMPERATURE**, a heating water bath will lead to decomposition of the crude primary amine). The as obtained crude primary amine was then dissolved in CH_2Cl_2 (2.0 mL), transferred to a solution of **31** (148.2 mg, 0.2 mmol) in CH_2Cl_2 (2.0 mL) followed by addition of EDCI (46.0 mg, 0.24 mmol, 1.2 equiv.) and DMAP (2.4 mg, 0.02 mmol, 0.1 equiv.). The yellow solution was stirred at RT for 16 h, then diluted with CH_2Cl_2 and brine. The aqueous layer was extracted with CH_2Cl_2 (five times), the combined organic layer was dried over Na_2SO_4 , filtered and concentrated under reduced pressure. Purification by chromatography on silica gel ($CH_2Cl_2/MeOH$ 95/5 to 9/1) afforded 199.0 mg (0.17 mmol, 86%) of the title compound **32**.

Physical state: yellow oil.

¹**H NMR (500 MHz, CDCl₃):** δ 7.11 (s, 2H), 6.87 (t, *J* = 5.4 Hz, 1H), 6.82 (s, 1H), 6.78 (dd, *J* = 3.7, 2.1 Hz, 2H), 4.21 (t, *J* = 4.8 Hz, 4H), 4.19 (t, *J* = 4.8 Hz, 2H), 4.13 (t, *J* = 5.3 Hz, 2H), 4.02 (qt, *J* = 7.6 Hz, 8H), 3.8 (t, *J* = 5.1 Hz, 4H), 3.72-3.62 (m, 30H), 3.55-3.52 (m, 6H), 3.37 (s, 3H), 3.36 (s, 6H), 3.09 (d, ²*J*_{*P*-*H*} = 21.6 Hz, 4H), 1.25 (t, *J* = 7.0 Hz, 12H) ppm

¹³**C NMR (125 MHz, CDCl₃):** δ 167.2, 158.6 (t, ⁴J_{C-P} = 3.3 Hz), 152.4, 141.5, 133.2 (d, ²J_{C-P} = 6.2 Hz), 129.5, 124.1 (t, ³J_{C-P} = 7.0 Hz), 114.6 (t, ³J_{C-P} = 4.5 Hz), 107.3, 72.3, 71.9, 70.6—70.4 (several peaks), 69.7, 69.1, 66.7, 62.1 (d, ²J_{C-P} = 6.8 Hz), 59.0, 39.5, 33.6 (d, ¹J_{C-P} = 138.0 Hz), 16.4 (d, ³J_{C-P} = 6.4 Hz) ppm

³¹P NMR (202 MHz, CDCl₃): δ 26.0 ppm

MALDI-TOF: m/z calcd for $C_{52}H_{91}NO_{23}P_2Na$ [M+Na]⁺ 1182.546, found 1182.548

TLC: R_f = 0.4 (CH₂Cl₂/MeOH 94/6, KMnO₄).

To a solution of Methyl-3,5-dihydroxybenzoate (866.8 mg, 5.0 mmol) in DMSO (50.0 mL) at RT were successively added KOH (840.0 mg, 15.0 mmol, 3.0 equiv.), KI (215.8 mg, 1.3 mmol, 0.2 equiv.) and **15** (2533.3 mg, 10.5 mmol, 2.1 equiv.). The yellow solution was stirred at RT for 16 h, then quenched with an aqueous solution of HCl 2N (50.0 mL) and diluted with EtOAc (30.0 mL). The aqueous layer was extracted with EtOAc (three times), the combined organic layers were washed with brine (five times), dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification by chromatography on silica gel (Cyclohexane/CH₂Cl₂/EtOAc 6/3/1) afforded 1.4 g (4.5 mmol, 87%) of the title compound **33**.

Physical state: colorless oil.

¹H NMR (300 MHz, CDCl₃): δ 7.28 (d, *J* = 2.3 Hz, 2H), 6.76 (d, *J* = 2.4 Hz, 1H), 4.23 (t, *J* = 4.8 Hz, 4H), 3.96 (s, 3H), 3.66 (t, *J* = 5.0 Hz, 4H) ppm

TLC: R_f = 0.2 (Cyclohexane/EtOAc 95/5, KMnO₄).

Spectral data matches the literature.^[7]

To a solution of **33** (1.33 g, 4.3 mmol) in MeOH (18.0 mL) at RT were successively added NaOH (0.87 g, 21.7 mmol, 5.0 equiv.) and H_2O (2.0 mL). The yellow solution was stirred at RT for 16 h, then quenched with an aqueous solution of HCl 2N (15.0 mL) and diluted with EtOAc (30.0 mL). The aqueous layer was extracted with EtOAc (three times), the combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford 1.2 g (4.1 mmol, 95%) of the title compound **34**.

Physical state: white solid.

¹H NMR (300 MHz, CDCl₃): δ 7.30 (d, *J* = 2.2 Hz, 2H), 6.76 (d, *J* = 2.2 Hz, 1H), 4.20 (t, *J* = 5.0 Hz, 4H), 3.63 (t, *J* = 4.8 Hz, 4H) ppm

TLC: R_f = 0.2 (Cyclohexane/EtOAc 8/2, KMnO₄).

Spectral data matches the literature.^[7]

To a solution of **17** (2103.5 mg, 4.5 mmol, 1.1 equiv.) in EtOAc (20.0 mL) at RT was added Pd/C 10% (242.0 mg, 0.2 mmol, 0.05 equiv.). The heterogeneous solution was evacuated and backfilled with an atmosphere of hydrogen (balloon), vigorously stirred at RT for 5 h, then the catalyst was filtered off over Celite and the crude product was concentrated under reduced pressure (*Caution: the water bath must be kept at ROOM TEMPERATURE, a heating water bath will lead to decomposition of the crude primary amine*). In a separate flask, **34** (1206.0 mg, 4.1 mmol) was dissolved in CH₂Cl₂ (15.0 mL) before EDCI (943.2 mg, 4.9 mmol, 1.2 equiv.) and DMAP (4.9 mg, 0.41 mmol, 0.1 equiv.) were added. The resulting solution was stirred at RT for 15 min, before the crude primary amine was added as a solution of CH₂Cl₂ (5.0 mL). The yellow solution was stirred at RT for 16 h, then concentrated under reduced pressure. The crude residue was purified by chromatography on silica gel (CH₂Cl₂/MeOH 95/5 to 9/1) to afford 2.9 g (4.1 mmol, 98%) of the title compound **35**.

Physical state: yellow viscous oil.

¹H NMR (500 MHz, CDCl₃): δ 6.96 (d, *J* = 2.1 Hz, 2H), 6.82 (s, 1H), 6.78 (dd, *J* = 3.6, 2.1 Hz, 2H), 6.64 (brs, 1H), 6.62 (t, *J* = 2.2 Hz, 1H), 4.18 (t, *J* = 4.8 Hz, 4H), 4.13 (t, *J* = 5.0 Hz, 2H), 4.02 (qt, *J* = 7.8 Hz, 8H), 3.82 (q, *J* = 5.0 Hz, 2H), 3.60 (t, *J* = 5.0 Hz, 4H), 3.09 (d, ²*J*_{P-H} = 21.9 Hz, 4H), 1.25 (t, *J* = 7.0 Hz, 12H) ppm

¹³**C NMR (500 MHz, CDCl₃):** δ 167.0, 159.5, 158.5, 136.8, 133.3 (d, ${}^{2}J_{C-P} = 11.0$ Hz), 124.2 (t, ${}^{3}J_{C-P} = 6.3$ Hz), 114.6 (t, ${}^{3}J_{C-P} = 5.0$ Hz), 106.1, 104.9, 67.2, 66.7, 62.1 (d, ${}^{2}J_{C-P} = 6.9$ Hz), 39.5, 33.6 (d, ${}^{1}J_{C-P} = 138.1$ Hz), 16.4 (d, ${}^{1}J_{C-P} = 6.3$ Hz) ppm

³¹P NMR (202 MHz, CDCl₃): δ 26.0 ppm

MALDI-TOF: m/z calcd for $C_{29}H_{44}N_7O_{10}P_2$ [M+H]⁺ 712.257, found 712.262

TLC: R_f = 0.3 (CH₂Cl₂/MeOH 96/4, KMnO₄).

To a solution of **35** (711.6 mg, 1.0 mmol) in MeOH (10.0 mL) at RT was added Pd/C 10% (106.4 mg, 0.1 mmol, 0.1 equiv.). The heterogeneous solution was evacuated and backfilled with an atmosphere of hydrogen (balloon), vigorously stirred at RT for 5 h, then the catalyst was filtered off over Celite and the crude product was concentrated under reduced pressure. *In a separate flask*, **31** (1481.3 mg, 2.0 mmol, 2.0 equiv.) was dissolved in CH₂Cl₂ (6.0 mL) before EDCI (460.0 mg, 2.4 mmol, 2.4 equiv.) and DMAP (24.4 mg, 0.2 mmol, 0.2 equiv.) were added. The resulting solution was stirred at RT for 15 min, before the crude primary amine was added as a solution of CH₂Cl₂ (4.0 mL). The yellow solution was stirred at RT for 48 h, then diluted with CH₂Cl₂ and brine. The aqueous layer was extracted with CH₂Cl₂ (five times), the combined organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was purified by chromatography on silica gel (CH₂Cl₂/MeOH/EtOAc 7/2/1 to 7/3/0) to afford 1.7 g (0.8 mmol, 81%) of the title compound **36**.

Physical state: yellow oil.

¹H NMR (500 MHz, CD₃OD-*d*₄): δ 7.24—7.20 (m, 4H), 7.07 (d, 2H), 6.86 (s, 3H), 6.78 (s, 1H), 4.24—4.17 (m, 18H), 4.04 (qt, *J* = 7.1 Hz, 8H), 3.88 (t, *J* = 4.4 Hz, 8H), 3.80—3.60 (m, 74H), 3.53—3.51 (m, 12H), 3.33 (s, 18H), 3.21 (d, ²*J*_{*P*-*H*} = 21.7 Hz, 4H), 1.26 (t, *J* = 6.8 Hz, 12H) ppm

¹³C NMR (500 MHz, CD₃OD-*d*₄): δ 168.3, 160.0, 152.2, 136.2, 133.0 (d, ${}^{2}J_{C-P}$ = 11.8 Hz), 129.4, 123.8 (t, ${}^{3}J_{C-P}$ = 6.6 Hz), 114.6 (t, ${}^{3}J_{C-P}$ = 4.8 Hz), 109.2, 107.8, 106.3, 104.4, 73.3, 72.3, 71.5 (several peaks), 70.6, 69.9, 67.7, 67.4, 63.7 (t, ${}^{2}J_{C-P}$ = 7.2 Hz), 59.1, 50.7, 33.6 (d, ${}^{1}J_{C-P}$ = 136.5 Hz), 16.7 (d, ${}^{3}J_{C-P}$ = 4.5 Hz) ppm

³¹P NMR (202 MHz, CD₃OD-*d*₄): δ 27.2 ppm

 $\textbf{MALDI-TOF:}\ m/z\ calcd\ for\ C_{97}H_{163}N_3O_{42}P_2Na\ [M+Na]^+\ 2127.019,\ found\ 2127.022$

TLC: R_f = 0.3 (CH₂Cl₂/MeOH 9/1, KMnO₄).

37

To a solution of **35** (711.6 mg, 1.0 mmol) in MeOH (8.0 mL) at RT was added Pd/C 10% (53.2 mg, 0.05 mmol, 0.05 equiv.). The heterogeneous solution was evacuated and backfilled with an atmosphere of hydrogen (balloon), vigorously stirred at RT for 5 h, then the catalyst was filtered off over Celite and the crude product was concentrate under reduced pressure. *In a separate flask*, **26** (1281.4 mg, 2.0 mmol, 2.0 equiv.) was dissolved in DMF (2.0 mL) before EDCI (575.1 mg, 3.0 mmol, 3.0 equiv.) and DMAP (24.4 mg, 0.2 mmol, 0.2 equiv.) were added. The resulting solution was stirred at RT for 15 min, before the crude primary amine was added as a solution of DMF (2.0 mL). The yellow solution was stirred at RT for 48 h, then diluted with CH_2Cl_2 and brine. The aqueous layer was extracted with CH_2Cl_2 (five times), the combined organic layer was dried over Na_2SO_4 , filtered and concentrated under reduced pressure. The crude residue was purified by chromatography on silica gel ($CH_2Cl_2/MeOH/EtOAc 80/4/16$ to 80/8/12 to 9/1/0 to 7/3/0) to afford 1.2 g (0.6 mmol, 61%) of the title compound **37**.

Physical state: yellow viscous oil.

¹H NMR (300 MHz, CDCl₃): δ 7.47 (d, J = 6.8 Hz, 4H), 7.34—7.29 (m, 7H), 7.10—7.02 (m, 8H), 6.80— 6.76 (m, 3H), 6.66 (s, 1H), 5.08 (s, 4H), 4.22—4.11 (m, 18H), 4.02 (qt, J = 7.2 Hz, 8H), 3.81—3.49 (m, 72H), 3.33 (s, 12H), 3.10 (d, ²*J*_{*P*-H} = 21.2 Hz, 4H), 1.24 (t, J = 6.9 Hz, 12H) ppm

TLC: R_f = 0.4 (CH₂Cl₂/MeOH 9/1, KMnO₄).

Spectral data matches the literature.^[2]

General procedure for synthesis of dendron 38-10 with OEG 23-25

To a solution of dendron **37** in MeOH was added $Pd(OH)_2/C 20\%$ (0.15 equiv.). The heterogeneous solution was evacuated and backfilled with an atmosphere of hydrogen (balloon), vigorously stirred at RT for 16 h, then the catalyst was filtered off over Celite and the crude product was concentrate under reduced pressure. The crude phenol was next dissolved in DMF (0.05 M) before K_2CO_3 (6.0 equiv.) and the corresponding OEG (**23**—**25**, 2.4 equiv.) were added. The resulting solution was heated to 80 °C for 48 h, cooled to RT, then diluted with CH_2Cl_2 and brine. The aqueous layer was extracted with CH_2Cl_2 (five times), the combined organic layer was dried over Na_2SO_4 , filtered and concentrated under reduced pressure. Purification by reverse phase C_{18} chromatography afforded the desired dendron **38**—**40**.

38

Obtained from OEG 23, 116.1 mg isolated (0.05 mmol, 73%)

Eluents: CH₃CN/H₂O + 0.1% TFA 6/4 to 1/0.

Physical state: light yellow oil.

¹H NMR (500 MHz, CD₃OD- d_4): δ 7.18 (s, 4H), 7.04 (d, J = 2.1 Hz, 2H), 6.83 (t, J = 2.1 Hz, 3H), 6.76 (t, J = 2.1 Hz, 1H), 4.21—4.18 (m, 14H), 4.01 (qt, J = 7.2 Hz, 8H), 3.85 (t, J = 4.5 Hz, 8H), 3.79 (t, J = 4.7 Hz, 4H), 3.76—3.73 (m, 7H), 3.70—3.57 (m, 80H), 3.50—3.48 (m, 8H), 3.31 (s, 12H), 3.17 (d, ² J_{P-H} = 21.7 Hz, 4H), 2.45 (t, J = 6.2 Hz, 4H), 1.43 (s, 18H), 1.24 (t, J = 7.0 Hz, 12H) ppm

¹³C NMR (125 MHz, CD₃OD-*d*₄): δ 172.7, 169.5, 161.4, 153.7, 142.3, 137.5, 130.4, 115.9, 107.9, 107.2, 81.7, 73.5, 72.4, 71.7, 71.6, 71.5 (several peaks), 71.4, 71.3, 70.7, 70.0, 67.8, 67.7, 67.4, 63.7 (${}^{2}J_{P-C}$ = 7.3 Hz), 59.1, 43.7, 40.6, 37.2, 33.6 (${}^{1}J_{P-C}$ = 139.0 Hz), 28.3, 16.7 (${}^{3}J_{P-C}$ = 5.5 Hz) ppm

³¹P NMR (202 MHz, CD₃OD-*d*₄): δ 27.2 ppm

MALDI-TOF: m/z calcd for $C_{109}H_{183}N_3O_{46}P_2Na$ [M+Na]⁺ 2355.144, found 2355.150

TLC: $R_f = 0.3$ (CH₂Cl₂/MeOH 9/1, phosphomolybdic acid).

39

Obtained from OEG 24, 585.8 mg isolated (0.23 mmol, 73%)

Eluents: CH₃CN/H₂O + 0.1% TFA 1/1 to 1/0.

Physical state: light yellow oil.

¹**H NMR (300 MHz, CD₃OD-***d*₄): δ 7.26 (s, 4H), 7.11 (d, *J* = 2.2 Hz, 2H), 6.90 (t, *J* = 2.3 Hz, 3H), 6.84 (t, *J* = 2.2 Hz, 1H), 4.26–4.21 (m, 18H), 4.08 (qt, *J* = 7.3 Hz, 8H), 3.85 (t, *J* = 4.5 Hz, 8H), 3.93–3.54 (m, 144H), 3.38 (s, 12H), 3.24 (d, ²*J*_{P-H} = 22.1 Hz, 4H), 2.52 (t, *J* = 6.5 Hz, 4H), 1.51 (s, 18H), 1.31 (t, *J* = 7.6 Hz, 12H) ppm

TLC: R_f = 0.4 (CH₂Cl₂/MeOH 86/14, phosphomolybdic acid).

Spectral data matches the literature.^[2]

Obtained from OEG 25, 75.2 mg isolated (0.03 mmol, 44%)

Eluents: CH₃CN/H₂O + 0.1% TFA 1/1 to 6/4.

Physical state: light yellow oil.

¹H NMR (500 MHz, CD₃OD-*d*₄): δ 7.22 (d, *J* = 1,2 Hz, 4H), 7.04 (d, *J* = 2.2 Hz, 2H), 6.83 (t, *J* = 2.0 Hz, 3H), 6.76 (t, *J* = 2.1 Hz, 1H), 4.25–4.21 (m, 10H), 4.19 (t, *J* = 5.7 Hz, 4H), 4.15 (t, *J* = 5.5 Hz, 2H), 4.01 (qt, *J* = 7.1 Hz, 8H), 3.86 (t, *J* = 4.4 Hz, 8H), 3.77–3.48 (m, 136H), 3.33 (s, 6H), 3.31 (s, 12H), 3.31 (s, 12H), 3.17 (d, ²*J*_{P-H} = 21.8 Hz, 4H), 1.23 (t, *J* = 7.1 Hz, 12H) ppm

¹³C NMR (125 MHz, CD₃OD-*d*₄): δ 169.8, 169.5, 161.5, 153.7, 137.7, 134.4, 131.1, 116.0, 107.3, 105.9,
73.5, 72.9, 72.8, 71.5, 71.4, 71.4, 71.2, 71.1 (several peaks), 71.0, 70.5, 69.5, 67.7, 67.4, 63.7 (²*J*_{P-C} =
7.4 Hz), 61.9, 59.1, 59.0, 43.9, 40.7, 33.6 (¹*J*_{P-C} = 137.0 Hz), 16.7 (³*J*_{P-C} = 5.9 Hz) ppm

³¹P NMR (202 MHz, CD₃O-*d*₄): δ 27.2 ppm

MALDI-TOF: m/z calcd for $C_{101}H_{171}N_3O_{44}P_2Na$ [M+Na]⁺ 2215.069, found 2215.059

TLC: $R_f = 0.3$ (CH₂Cl₂/MeOH 9/1, phosphomolybdic acid).

To a solution of **Benzyl gallate** (102.8 mg, 0.4 mmol, 1.3 equiv.) in DMF (2.0 mL) at RT were added KHCO₃ (78.1 mg, 0.8 mmol, 3.9 equiv.) and **24** (121.6 mg, 0.2 mmol). The resulting solution was heated to 60 °C for 16 h, cooled to RT, quenched with an aqueous solution of HCl 2N (2.0 mL). The aqueous layer was extracted with EtOAc, the combined organic layers were washed with brine (five times), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was purified by chromatography on silica gel (CH₂Cl₂/MeOH 96/4 to 92/8) to afford 130.6 mg (0.18 mmol, 88%) of the title compound **41**.

Physical state: brown oil.

¹H NMR (500 MHz, CDCl₃): δ 7.42 (d, J = 7.2 Hz, 2H), 7.37 (d, J = 7.6 Hz, 2H), 7.32 (td, J = 7.3, 1.3 Hz, 1H), 7.20 (d, J = 1.1 Hz, 2H), 7.17—7.13 (brs, 2H), 5.30 (s, 2H), 4.20—4.18 (m, 2H), 3.84—3.82 (m, 2H), 3.79—3.7 (m, 2H), 3.72—3.57 (m, 32H), 2.48 (t, J = 6.7 Hz, 2H), 1.43 (s, 9H) ppm

¹³C NMR (125 MHz, CDCl₃): δ 174.0, 166.0, 149.8, 138.1, 136.1, 128.5, 128.1, 128.0, 126.6, 109.6, 80.5, 73.5, 70.7, 70.6, 70.5–70.4 (several peaks), 70.3, 70.0, 66.8, 66.5, 36.2, 28.0 ppm

MALDI-TOF: m/z calcd for $C_{37}H_{57}O_{15}$ [M+H]⁺ 741.367, found 741.350

TLC: R_f = 0.3 (CH₂Cl₂/MeOH 94/6, KMnO₄).

To a solution of **41** (130.6 mg, 0.18 mmol) in Acetone (4.0 mL) at RT were added K_2CO_3 (74.6 mg, 0.54 mmol, 3.0 equiv.), KI (2.9 mg, 0.02 mmol, 0.1 equiv.) and **20** (241.5 mg, 0.37 mmol, 2.1 equiv.). The resulting solution was heated to reflux for 36 h, cooled to RT. The solvent was removed, the crude residue was next suspended in CH_2Cl_2 , filtered over Celite and concentrated under reduced pressure. The crude residue was purified by reverse phase C_{18} chromatography ($CH_3CN/H_2O + 1\%$ TFA 6/4 to 7/3) to afford 241.5 mg (0.14 mmol, 80%) of the title compound **42**.

Physical state: brown oil.

¹**H NMR (500 MHz, CDCl₃):** δ 7.41 (dd, *J* = 7.8, 1.5 Hz, 2H), 7.37 (td, *J* = 7.2, 2.4 Hz, 2H), 7.34—7.33 (m, 1H), 7.31 (s, 2H), 5230 (s, 2H), 4.19 (t, *J* = 4.9 Hz, 2H), 4.16 (t, *J* = 4.9 Hz, 4H), 3.83 (t, *J* = 5.0 Hz, 4H), 3.77 (t, *J* = 4.9 Hz, 2H), 3.71—3.59 (m, 96H), 2.49 (t, *J* = 6.5 Hz, 6H), 1.43 (s, 9H) ppm

¹³C NMR (125 MHz, CDCl₃): δ 171.0, 165.9, 158.7, 152.3, 142.7, 136.0, 128.6, 128.2, 125.0, 109.2, 80.6,
72.4, 70.7, 70.6—70.4 (several peaks), 70.3, 69.6, 68.8, 66.9, 66.8, 36.2, 28.1 ppm

MALDI-TOF: m/z calcd for $C_{83}H_{144}O_{35}Na$ [M+Na]⁺ 1723.951, found 1723.940

TLC: R_f = 0.3 (CH₂Cl₂/MeOH 94/6, KMnO₄).

To a solution of **42** (241.5 mg, 0.14 mmol) in MeOH (4.0 mL) at RT was added $Pd(OH)_2/C$ 20% (9.8 mg, 0.01 mmol, 0.1 equiv.). The heterogeneous solution was evacuated and backfilled with an atmosphere of hydrogen (balloon), vigorously stirred at RT for 5 h, then the catalyst was filtered off over Celite and the crude product was concentrated under reduced pressure to afford 212.4 mg (0.13 mmol, 93%) of the title compound **43**.

Physical state: yellow oil.

¹**H NMR (500 MHz, CDCl₃):** δ 7.35 (s, 2H), 4.22 (t, *J* = 4.9 Hz, 2H), 4.20 (t, *J* = 4.8 Hz, 4H), 3.83 (t, *J* = 5.1 Hz, 6H), 3.77 (t, *J* = 4.9 Hz, 2H), 3.71—3.60 (m, 94H), 2.49 (t, *J* = 6.4 Hz, 6H), 1.43 (s, 9H) ppm

¹³C NMR (125 MHz, CDCl₃): δ 171.0, 167.8, 152.2, 142.8, 124.9, 109.7, 80.6, 72.5, 70.8, 70.6—70.4 (several peaks), 70.3, 69.7, 68.9, 66.9, 36.2, 28.1 ppm

MALDI-TOF: m/z calcd for $C_{76}H_{137}O_{35}$ [M-H]⁺ 1609.900, found 1609.891

TLC: R_f = 0.1 (CH₂Cl₂/MeOH 94/6, KMnO₄).

To a solution of **35** (42.1 mg, 0.06 mmol) in MeOH (4.0 mL) at RT was added Pd/C 10% (12.6 mg, 0.01 mmol, 0.2 equiv.). The heterogeneous solution was evacuated and backfilled with an atmosphere of hydrogen (balloon), vigorously stirred at RT for 5 h, then the catalyst was filtered off over Celite and the crude product was concentrated under reduced pressure. The crude primary amine was next dissolved in DMF (1.0 mL) before **43** (219.3 mg, 0.13 mmol, 2.2 equiv.), HATU (67.5 mg, 0.18 mmol, 3.0 equiv.) and DIPEA (90.0 μ l, 0.54 mmol, 9.0 equiv.) were added. The resulting solution was stirred at RT for 40 h, then diluted with CH₂Cl₂ and brine. The aqueous layer was extracted with CH₂Cl₂ (five times), the combined organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification by reverse phase C₁₈ chromatography (CH₃CN/H₂O + 1% TFA 9/1 to 1/0) afforded 130.7 mg (0.03 mmol, 59%) of the title compound **44**.

Physical state: yellow oil.

¹**H NMR (500 MHz, CD₃OD-***d*₄**)**: δ 7.21 (s, 4H), 7.06 (d, *J* = 2.1 Hz, 2H), 6.84 (t, *J* = 2.1 Hz, 3H), 6.7 (t, *J* = 1.8 Hz, 1H), 4.21 (t, *J* = 5.0 Hz, 16H), 4.16 (t, *J* = 5.5 Hz, 2H), 4.02 (qt, *J* = 7.2 Hz, 8H), 3.86 (t, *J* = 4.7 Hz, 8H), 3.79 (t, *J* = 4.6 Hz, 4H), 3.77—3.57 (m, 188H), 3.19 (d, ²*J*_{P-H} = 22.0 Hz, 4H), 2.46 (t, *J* = 5.9 Hz, 12H), 1.44 (s, 54H), 1.24 (t, *J* = 7.0 Hz, 12H) ppm

¹³C NMR (125 MHz, CD₃OD-d₄): δ 172.7, 169.6, 161.5, 153.8, 142.4, 137.7, 134.5, 130.5, 120.7, 116.0, 108.0, 107.3, 105.9, 81.6, 73.6, 71.7, 71.6, 71.5 (several peaks), 71.4, 70.8, 70.1, 67.9, 63.7, 40.7, 37.2, 28.4, 16.7 ppm

³¹P NMR (202 MHz, CD₃OD-*d*₄): δ 27.2 ppm

MALDI-TOF: m/z calcd for $C_{177}H_{311}N_3O_{76}P_2Na$ [M+Na]⁺ 3779.992, found 3779.720

TLC: $R_f = 0.2$ (CH₂Cl₂/MeOH 8/2, KMnO₄).
Part 2: Development of dendritic coating for metallic oxide nanoparticles

Compound 45

To a solution of **20** (1347.4 mg, 2.1 mmol) in CH₂Cl₂ (20.0 mL) at RT was added TFA (1.3 mL, 16.5 mmol, 8.0 equiv.). The resulting solution was stirred at RT for 16 h, then concentrated under reduced pressure. The crude carboxylic acid was next dissolved in CH₂Cl₂ before (COCl)₂ (0.5 mL, 5.9 mmol, 2.8 equiv.) and DMF (4 drops) were added at RT. The yellow solution was stirred at RT for 4 h, then concentrated under reduced pressure. The acyl chloride was next dissolved in CH₂Cl₂ before **Metronidazole**^[8] (529.0 mg, 2.1 mmol, 1.02 equiv.) and DIPEA (5.0 mL, 28.7 mmol, 13.7 equiv.) were added at RT. The resulting solution was stirred at RT for 16 h, then concentrated under reduced pressure. The concentrated under reduced pressure. The 3/7 to 4/6 to 1/1) to afford 870.0 mg (1.16 mmol, 56%) of the title compound **45**.

Physical state: brown oil.

¹H NMR (500 MHz, CDCl₃): δ 7.94 (s, 1H), 7.80 (dd, *J* = 8.2, 1.9 Hz, 2H), 7.35 (dd, *J* = 8.0, 2.0 Hz, 2H), 4.47 (t, *J* = 6.2 Hz, 2H), 4.16 (t, *J* = 4.7 Hz, 2H), 3.70—3.57 (m, 36H), 3.07 (s, 3H), 2.46 (t, *J* = 5.5 Hz, 2H), 2.45 (s, 3H) ppm

¹³C NMR (125 MHz, CDCl₃): δ 172.7, 151.3, 144.8, 138.5, 133.2, 133.07, 129.8, 127.9, 70.7, 70.5, 70.4 (several peaks), 70.3, 70.1, 70.0, 69.2, 68.6, 66.8, 45.1, 39.1, 36.6, 21.6, 14.2 ppm

MALDI-TOF: m/z calcd for $C_{32}H_{53}N_4O_{14}S$ [M+H]⁺ 749.322, found 749.256

TLC: R_f = 0.4 (CH₂Cl₂/MeOH 9/1, KMnO₄).

To a solution of **26** (161.2 mg, 0.15 mmol) in EtOAc (4.0 mL) at RT was added Pd/C 10% (16.2 mg, 0.02 mmol, 0.1 equiv.). The heterogeneous solution was evacuated and backfilled with an atmosphere of hydrogen (balloon), vigorously stirred at RT for 16 h, then the catalyst was filtered off over Celite and the crude product was concentrated under reduced pressure. The crude phenol was next dissolved in Acetone (4.0 mL) before **45** (119.6 mg, 0.16 mmol, 1.05 equiv.), K_2CO_3 (31.5 mg, 0.23 mmol, 1.5 equiv.) and KI (2.5 mg, 0.02 mmol, 0.1 equiv.) were added. The resulting solution was heated to reflux for 16 h, cooled to RT, then concentrated under reduced pressure. The crude residue was suspended in CH₂Cl₂, the solids were filtered over Celite and the crude product was concentrated under reduced pressure. Purification by chromatography on silica gel (CH₂Cl₂/MeOH 96/4 to 92/8 to 84/16) afforded 202.3 mg (0.13 mmol, 86%) of the title compound **46**.

Physical state: orange oil.

¹**H NMR (300 MHz, CDCl₃):** δ 7.96 (s, 1H), 7.13 (brs, 1H), 7.09 (s, 2H), 6.85 (brs, 1H), 6.80 (s, 1H), 6.76 (s, 2H), 4.45 (t, *J* = 6.3 Hz, 2H), 4.20 (t, *J* = 4.8 Hz, 4H), 4.18 (t, *J* = 5.0 Hz, 2H), 4.12 (t, *J* = 5.1 Hz, 2H), 4.01 (qt, *J* = 7.4 Hz, 8H), 3.83 (t, *J* = 4.8 Hz, 4H), 3.81–3.76 (m, 4H), 3.60–3.51 (m, 61H), 3.35 (s, 6H), 3.07 (d, ²*J*_{*P*-*H*} = 21.7 Hz, 4H), 2.50 (s, 3H), 2.43 (t, *J* = 5.7 Hz, 2H), 1.24 (t, *J* = 7.3 Hz, 12H) ppm

¹³**C NMR (125 MHz, CDCl₃):** δ 172.7, 167.2, 158.6, 152.4, 151.3, 141.5, 138.5, 133.3 (t, ²*J*_{*C-P*} = 6.1 Hz), 133.2, 129.4, 124.0 (t, ³*J*_{*C-P*} = 6.4 Hz), 114.6 (t, ³*J*_{*C-P*} = 4.5 Hz), 107.3, 72.3, 71.9, 70.7, 70.6, 70.5 (several

peaks), 70.4, 70.1, 69.7, 69.1 66.7, 62.1 (d, ${}^{2}J_{C-P}$ = 7.0 Hz), 59.0, 45.0, 39.6, 39.1, 36.6, 33.6 (d, ${}^{1}J_{C-P}$ = 138.6 Hz), 16.4 (d, ${}^{3}J_{C-P}$ = 5.7 Hz), 14.1 ppm

³¹P NMR (121 MHz, CDCl₃): δ 26.0 ppm

MALDI-TOF: m/z calcd for $C_{68}H_{117}N_5O_{30}P_2Na$ [M+Na]⁺ 1568.727, found 1568.686

TLC: $R_f = 0.4$ (CH₂Cl₂/MeOH 9/1, KMnO₄).

To a solution of **Methyl Gallate** (165.7 mg, 0.9 mmol, 1.3 equiv.) in DMF (2.0 mL) at RT was added KHCO₃ (270.3 mg, 2.7 mmol, 3.9 equiv.). The resulting solution was stirred at RT for 10 mn before **22** (217.2 mg, 0.7 mmol) was added. The resulting solution was heated to 60 °C for 16 h, cooled to RT and quenched with an aqueous solution of HCl 2N (3.0 mL). The aqueous layer was extracted with CH_2Cl_2 , the combined organic layers were washed with brine, dried over Na_2SO_4 , filtered and concentrated under reduced pressure. Purification by chromatography on silica gel ($CH_2Cl_2/MeOH$ 96/4 to 92/8) afforded 192.6 mg (0.51 mmol, 86%) of the title compound **47**.

Physical state: yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 7.17 (d, *J* = 1.0 Hz, 2H), 4.18 (t, *J* = 3.8 Hz, 2H), 3.86—3.79 (m, 6H), 3.75— 3.63 (m, 10H), 3.54 (t, *J* = 4.0 Hz, 2H), 3.37 (s, 3H) ppm

¹³**C NMR (125 MHz, CDCl₃):** δ 166.7, 149.6, 137.9, 126.8, 109.5, 73.5, 71.9, 70.7, 70.6, 70.5, 70.4, 70.2, 70.0, 59.0, 52.1 ppm

MALDI-TOF: m/z calcd for $C_{17}H_{261}O_9H [M+H]^+ 375.164$, found 375.160

TLC: R_f = 0.3 (CH₂Cl₂/MeOH 98/2, KMnO₄).

To a solution of **47** (26.5 mg, 0.08 mmol) in DMF (1.5 mL) at RT were successively added K_2CO_3 (32.1 mg, 0.23 mmol, 3.0 equiv.), KI (2.5 mg, 0.02 mmol, 0.2 equiv.) and **45** (111.3 mg, 0.15 mmol, 2.1 equiv.). The orange solution was heated to 80 °C for 48 h, cooled to RT and concentrated under reduced pressure. Purification by reverse phase C_{18} chromatography (CH₃CN/H₂O + 0.1% TFA 2/8 to 4/6) afforded 95.1 mg (0.06 mmol, 88%) of the title compound **48**.

Physical state: orange oil.

¹H NMR (500 MHz, CDCl₃): δ 7.98 (s, 2H), 7.30 (s, 2H), 7.21 (brs, 2H), 4.49 (t, *J* = 6.4 Hz, 4H), 4.22 (t, *J* = 5.0 Hz, 2H), 4.20 (t, *J* = 5.0 Hz, 4H), 3.89 (s, 3H), 3.87 (t, *J* = 5.0 Hz, 6H), 3.79 (t, *J* = 4.8 Hz, 4H), 3.73—3.59 (m, 86H), 3.55 (t, *J* = 4.9 H, 4H), 3.38 (s, 3H), 2.56 (s, 6H), 2.46 (t, *J* = 5.4 Hz, 4H) ppm

¹³C NMR (125 MHz, CDCl₃): δ 172.8, 166.5, 152.2, 151.1, 142.5, 132.6, 124.9, 109.0, 72.4, 71.9, 70.8, 70.6–70.5 (several peaks), 70.4, 70.2, 70.1, 69.6, 68.8, 59.0, 52.1, 45.2, 39.0, 36.6, 14.0 ppm

MALDI-TOF: m/z calcd for $C_{67}H_{114}N_8O_{31}Na$ [M+Na]⁺ 1549.750, found 1549.642

TLC: R_f = 0.3 (CH₂Cl₂/MeOH 9/1, KMnO₄).

To a solution of **48** (95.1 mg, 0.06 mmol) in MeOH (0.9 mL) and H_2O (0.1 mL) at RT was added NaOH (12.5 mg, 0.3 mmol, 5.0 equiv.). The orange solution was stirred at RT for 16 h, then quenched with an aqueous solution of HCl 2N (2.0 mL). The aqueous layer was extracted with CH_2Cl_2 , the combined organic layers were washed with brine, dried over Na_2SO_4 , filtered and concentrated under reduced pressure to afford 94.7 mg (0.06 mmol, 99%) of the title compound **49**.

Physical state: orange oil.

¹**H NMR (500 MHz, CDCl₃):** δ 7.98 (s, 2H), 7.38 (s, 2H), 7.34 (brs, 1H), 4.49 (t, *J* = 6.0 Hz, 4H), 4.24—4.22 (m, 8H), 3.87 (t, *J* = 5.1 Hz, 6H), 3.80 (t, *J* = 5.4 Hz, 4H), 3.73—3.54 (m, 115H), 3.38 (s, 3H), 2.54 (s, 6H), 2.48 (t, *J* = 5.5 Hz, 4H) ppm

¹³C NMR (125 MHz, CDCl₃): δ 173.0, 167.8, 152.2, 151.2, 142.6, 138.5, 132.8, 109.7, 72.4, 71.9, 70.8, 70.6, 70.5—70.4 (several peaks), 70.1, 70.0, 69.7, 68.9, 66.8, 59.0, 45.1, 39.2, 36.6, 14.0 ppm

MALDI-TOF: m/z calcd for $C_{66}H_{111}N_8O_{31}$ [M-H]⁺ 1511.744, found 1511.660

TLC: R_f = 0.1 (CH₂Cl₂/MeOH 9/1, KMnO₄).

To a solution of **17** (58.6 mg, 0.12 mmol, 1.1 equiv.) in EtOAc (4.0 mL) was added Pd/C 10% (13.4 mg, 0.01 mmol, 0.1 equiv.) The heterogeneous solution was evacuated and backfilled with hydrogen (balloon), then vigorously stirred at RT for 3 h. The catalyst was filtered over Celite, the crude product was concentrated under reduced pressure. *In a separate flask*, **49** (174.0 mg, 0.11 mmol) was dissolved in CH₂Cl₂ (4.0 mL) before EDCI (25.3 mg, 0.13 mmol, 1.2 equiv.) and DMAP (1.4 mg, 0.01 mmol, 0.1 equiv.) were added. The resulting solution was stirred at RT for 10 mn, then the crude primary amine was added. The yellow solution was stirred at RT for 16h, then diluted with CH₂Cl₂ and brine. The aqueous layer was extracted with CH₂Cl₂ (five times), the combined organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification by chromatography on silica gel (CH₂Cl₂/MeOH 9/1 to 8/2) afforded 104.0 mg (0.05 mmol, 37%) of the title compound **50**.

Physical state: yellow viscous oil.

¹H NMR (500 MHz, CDCl₃): δ 7.96 (s, 2H), 7.23 (brs, 2H), 7.12 (s, 2H), 6.82 (s, 1H), 6.78 (s, 2H), 4.47 (t, J = 6.1 Hz, 4H), 4.21 (t, J = 3.9 Hz, 6H), 4.19 (t, J = 5.4 Hz, 2H), 4.14 (t, J = 5.2 Hz, 2H), 4.03 (qt, J = 7.6 Hz, 8H), 3.85 (t, J = 4.6 Hz, 6H), 3.82—3.78 (m, 6H), 3.74—3.54 (m, 94H), 3.38 (s, 3H), 3.09 (d, ² $_{J_{P-H}} = 21.5$ Hz, 4H), 2.53 (s, 6H), 2.45 (t, J = 5.3 Hz, 4H), 1.26 (t, J = 6.9 Hz, 12H) ppm

¹³C NMR (125 MHz, CDCl₃): δ 172.7, 167.2, 158.6, 152.4, 151.2, 138.5, 133.3, 132.8, 129.5, 124.0, 114.6, 107.2, 72.5, 72.3, 71.9, 70.7, 70.6—70.4 (several peaks), 70.1, 69.7, 69.0, 66.8, 62.1 (d, ${}^{2}J_{C-P}$ = 6.8 Hz), 59.0, 45.2, 39.6, 39.1, 36.6, 33.6 (d, ${}^{1}J_{C-P}$ = 5.7 Hz), 16.4 (d, ${}^{3}J_{C-P}$ = 137.9 Hz), 14.0 ppm

³¹P NMR (202 MHz, CDCl₃): δ 26.0 ppm

 $\textbf{MALDI-TOF:}\ m/z\ calcd\ for\ C_{84}H_{143}N_9O_{37}P_2Na\ [M+Na]^+\ 1954.960,\ found\ 1954.722$

TLC: R_f = 0.2 (CH₂Cl₂/MeOH 9/1, KMnO₄).

<u>Part 3:</u> Development of dendritic coating for the development of hybrid microbubbles

Compound 51

To a solution of **28** (258.3 mg, 0.18 mmol) in CH_2Cl_2 (2.0 mL) at RT was added TFA (0.4 mL, 5.2 mmol, 29.0 equiv.). The yellow solution was stirred at RT for 4 h, concentrated under reduced pressure, dissolved in DMF (2.0 mL) before 1-*Z*-Piperazine (45.0 µL, 0.21 mmol, 1.2 equiv.), DIPEA (1.0 mL, 5.7 mmol, 32.0 equiv.) and HATU (81.2 mg, 0.21 mmol, 1.2 equiv.) were added. The resulting solution was stirred at RT for 16 h, then diluted with CH_2Cl_2 and brine. The aqueous layer was extracted with CH_2Cl_2 (five times), the combined organic layer was washed with brine, dried over Na_2SO_4 , filtered and concentrated under reduced pressure. Purification by chromatography on silica gel ($CH_2Cl_2/MeOH$ 95/5 to 9/1) followed by a reverse phase C_{18} chromatography ($CH_3CN/H_2O + 0.1\%$ TFA 45/55) afforded 283.6 mg (0.18 mmol, 99%) of the title compound **51**.

Physical state: yellow oil.

¹H NMR (500 MHz, CDCl₃): δ 7.37—7.30 (m, 5H), 7.11 (s, 2H), 6.94 (brs, 1H), 6.80 (s, 1H), 6.76 (s, 2H), 5.14 (s, 2H), 4.21—4.18 (m, 6H), 4.12 (t, *J* = 5.1 Hz, 2H), 4.04 (qt, *J* = 7.4 Hz, 8H), 3.84 (t, *J* = 4.7 Hz, 4H), 3.82—3.81 (m, 2H), 3.78 (t, *J* = 5.6 Hz, 4H), 3.71—3.60 (m, 56H), 3.54—3.48 (m, 12H), 3.35 (s, 6H), 3.12 (d, ²*J*_{*P*-*H*} = 21.8 Hz, 4H), 2.65 (t, *J* = 6.5 Hz, 2H), 1.26 (t, *J* = 7.1 Hz, 12H) ppm

¹³C NMR (125 MHz, CDCl₃): δ 170.3, 167.6, 159.1, 158.7, 155.1, 152.4, 141.5, 136.3, 132.7 (t, ${}^{2}J_{C-P}$ = 11.6 Hz), 129.2, 128.5, 128.2, 128.0, 124.0 (t, ${}^{3}J_{C-P}$ = 7.1 Hz), 116.1, 114.8 (t, ${}^{3}J_{C-P}$ = 4.5 Hz), 113.8, 107.3, 72.3, 71.9, 70.6—70.4 (several peaks), 69.7, 69.0, 67.5, 67.4, 66.6, 62.8 (d, ${}^{2}J_{C-P}$ = 6.8 Hz), 58.9, 45.6, 43.6, 41.5, 39.6, 33.6, 33.4 (d, ${}^{1}J_{C-P}$ = 138.1 Hz), 16.3 (d, ${}^{3}J_{C-P}$ = 5.5 Hz) ppm

³¹P NMR (202 MHz, CDCl₃): δ 26.3 ppm

MALDI-TOF: m/z calcd for $C_{74}H_{123}N_3O_{30}P_2Na$ [M+Na]⁺ 1618.762, found 1618.460

TLC: R_f = 0.4 (CH₂Cl₂/MeOH 9/1, KMnO₄).

To a solution of **28** (228.2 mg, 0.16 mmol) in CH₂Cl₂ (2.0 mL) at RT was added TFA (0.1 mL, 1.3 mmol, 8.2 equiv.). The yellow solution was stirred at RT for 4 h, concentrated under reduced pressure, dissolved in CH₃CN (2.0 mL) before K₂CO₃ (217.4 mg, 1.6 mmol, 10.0 equiv.), 1,1,1,2,2-Pentafluoro-6-pentafluoroiodohexane (100.0 mg, 0.32 mmol, 2.0 equivwere added. The resulting solution was heated to reflux for 16 h, cooled to RT. The solvent was removed, the crude product was suspended in CH₂Cl₂, the solids were filtered and the crude product was concentrated under reduced pressure. Purification by chromatography on silica gel (CH₂Cl₂/MeOH 9/1) afforded 233.8 mg (0.15 mmol, 92%) of the title compound **55**.

Physical state: yellow oil.

¹**H NMR (500 MHz, CDCl₃):** δ 7.10 (s, 2H), 7.00 (brs, 1H), 6.80 (s, 1H), 6.76 (s, 2H), 5.14 (s, 2H), 4.20 (t, *J* = 4.4 Hz, 4H), 4.17 (t, *J* = 4.6 Hz, 2H), 4.13–4.09 (m, 4H), 4.00 (qt, *J* = 7.4 Hz, 8H), 3.83 (t, *J* = 4.7 Hz, 4H), 3.79–3.75 (m, 4H), 3.73 (t, *J* = 6.4 Hz, 2H), 3.70–3.60 (m, 50H), 3.52–3.50 (m, 4H), 3.34 (s, 6H), 3.07 (d, ²*J*_{*P*-*H*} = 22.2 Hz, 4H), 2.58 (t, *J* = 6.6 Hz, 2H), 2.11–1.99 (m, 4H), 1.74–1.62 (m, 4H), 1.23 (t, *J* = 7.1 Hz, 12H) ppm

¹³C NMR (125 MHz, CDCl₃): δ 171.5, 167.2, 158.6, 152.4, 141.4, 133.2, 129.5, 124.0, 114.7, 107.3, 72.3, 71.9, 70.6—70.4 (several peaks), 69.7, 69.0, 66.7, 66.5, 63.6, 62.2 (d, ²J_{C-P} = 6.9 Hz), 59.0, 39.5, 35.0, 34.1, 33.0, 30.9, 30.4, 30.2, 30.0, 29.7, 28.0, 17.1, 16.4 (d, ³J_{C-P} = 5.8 Hz) ppm

³¹P NMR (202 MHz, CDCl₃): δ 26.3 ppm

¹⁹F NMR (282 MHz, CDCl₃): δ -85.4, -118.3 ppm

MALDI-TOF: m/z calcd for $C_{68}H_{116}F_5NO_{29}P_2Na$ [M+Na]⁺ 1590.699, found 1590.120

TLC: R_f = 0.4 (CH₂Cl₂/MeOH 9/1, KMnO₄).

General procedure for the *N*-alkylation

To a solution of dendron **51** (1.0 equiv.) in MeOH (0.05 M) at RT was added Pd/C 10% (0.1 equiv.). The heterogeneous solution was evacuated and backfilled with an atmosphere of hydrogen (balloon), vigorously stirred at RT for 5 h, then the catalyst was filtered off over Celite. The crude product was concentrated under reduced pressure, dissolved in CH₃CN (0.1 M) at RT before K2CO3 (2.0 equiv.) and the perfluoroalkyl iodide (1.2 equiv.) were added. The resulting solution was heated to 60 °C for 16 h, cooled to RT. The solvent was removed, then the crude residue was suspended in CH₂Cl₂, the solids were filtered and the crude product was concentrated under reduced pressure. Purification by flash chromatography on silica gel (deactivated with an aqueous solution of NH₄OH) afforded the desired dendron **52**—**54**.

Starting from 72.5 mg (0.05 mmol) of dendron **51** and 5-lodo-1,1,1-trifluoropentane (19.0 mg, 0.08 mmol), 62.0 mg isolated (0.04 mmol, 78%)

Eluents: $CH_2Cl_2/MeOH 9/1$ to 8/2.

Physical state: yellow oil.

¹**H NMR (500 MHz, CD₃OD-***d*₄**)**: δ 7.21 (s, 2H), 6.84 (t, *J* = 2.3 Hz, 3H), 4.22—4.19 (m, 6H), 4.16 (t, *J* = 5.8 Hz, 2H), 4.02 (qt, *J* = 7.4 Hz, 8H), 3.86 (t, *J* = 4.6 Hz, 4H), 3.79 (t, *J* = 4.7 Hz, 2H), 3.76—3.56 (m, 60H), 3.49 (t, *J* = 4.9 Hz, 4H), 3.32 (s, 6H), 3.18 (d, ²*J*_{P-H} = 22.2 Hz, 4H), 2.63 (t, *J* = 6.3 Hz, 2H), 2.49 (t, *J* = 4.3 Hz, 2H), 2.44 (t, *J* = 4.9 Hz, 2H), 2.41 (t, *J* = 7.5 Hz, 2H), 2.22—2.15 (m, 2H), 1.63—1.54 (m, 4H), 1.24 (t, *J* = 6.9 Hz, 12H) ppm

¹³C NMR (125 MHz, CD₃OD-*d*₄): δ 171.9, 169.5, 160.3, 153.8, 142.3, 134.4 (t, ${}^{2}J_{C-P}$ = 12.0 Hz), 130.4, 125.1 (t, ${}^{3}J_{C-P}$ = 6.5 Hz), 115.9 (t, ${}^{3}J_{C-P}$ = 4.6 Hz), 107.9, 73.6, 72.9, 71.7, 71.6, 71.5—71.4 (several peaks), 71.3, 70.8, 70.1, 68.4, 67.5, 63.7 (d, ${}^{2}J_{C-P}$ = 7.1 Hz), 59.1, 58.7, 54.3, 53.8, 46.6, 42.4, 40.8, 34.3, 34.0, 33.6 (d, ${}^{1}J_{C-P}$ = 138.3 Hz), 26.4, 20.9, 16.7 (d, ${}^{3}J_{C-P}$ = 5.2 Hz) ppm

¹⁹F NMR (470 MHz, CD₃OD-d₄): δ -63.9 ppm

³¹P NMR (202 MHz, CD₃OD-d₄): δ 31.2 ppm

MALDI-TOF: m/z calcd for $C_{71}H_{125}F_3N_3O_{28}P_2$ [M+H]⁺ 1587.693, found 1587.425

Starting from 72.5 mg (0.05 mmol) of dendron **51** and 1,1,1,2,2-Pentafluoro-6-iodohexane (0.08 mmol), 65.5 mg isolated (0.04 mmol, 80%)

Eluents: $CH_2Cl_2/MeOH 9/1$ to 8/2.

Physical state: yellow oil.

¹**H NMR (500 MHz, CD₃OD-***d*₄**)**: δ 7.20 (s, 2H), 6.84 (t, *J* = 2.3 Hz, 3H), 4.22—4.19 (m, 6H), 4.16 (t, *J* = 5.7 Hz, 2H), 4.02 (qt, *J* = 7.3 Hz, 8H), 3.86 (t, *J* = 4.7 Hz, 4H), 3.79 (t, *J* = 4.7 Hz, 2H), 3.76—3.56 (m, 58H), 3.49 (t, *J* = 4.9 Hz, 4H), 3.32 (s, 6H), 3.18 (d, ²*J*_{*P*-*H*} = 22.2 Hz, 4H), 2.63 (t, *J* = 6.4 Hz, 2H), 2.48 (t, *J* = 4.9 Hz, 2H), 2.44—2.39 (m, 4H), 2.20—2.09 (m, 2H), 1.63—1.60 (m, 4H), 1.24 (t, *J* = 6.9 Hz, 12H) ppm

¹³C NMR (125 MHz, CD₃OD-*d*₄): δ 171.9, 169.6, 160.4, 153.8, 142.4, 134.4 (t, ${}^{2}J_{C-P}$ = 10.9 Hz), 130.4, 125.2 (t, ${}^{3}J_{C-P}$ = 6.6 Hz), 115.9 (t, ${}^{3}J_{C-P}$ = 5.2 Hz), 107.9, 73.6, 72.9, 71.7, 71.6, 71.5—71.4 (several peaks), 71.3, 70.8, 70.1, 68.4, 67.5, 63.7 (d, ${}^{2}J_{C-P}$ = 7.1 Hz), 59.1, 58.7, 54.3, 53.8, 46.7, 42.5, 40.8, 34.3, 33.6 (d, ${}^{1}J_{C-P}$ = 137.3 Hz), 31.2, 28.8, 26.8, 19.4, 16.7 (d, ${}^{3}J_{C-P}$ = 5.8 Hz) ppm

¹⁹**F NMR (470 MHz, CD₃OD-***d*₄): δ -83.0, -115.4 ppm

³¹P NMR (202 MHz, CD₃OD-d₄): δ 31.2 ppm

MALDI-TOF: m/z calcd for $C_{72}H_{125}F_5N_3O_{28}P_2$ [M+H]⁺ 1636.788, found 1636.525

Starting from 95.8 mg (0.06 mmol) of dendron **51** and 8-lodo-1,1,1,2,2,3,3,4,4-nonafluorooctane (0.07 mmol), 57.5 mg isolated (0.03 mmol, 55%)

Eluents: $CH_2Cl_2/MeOH 9/1$ to 8/2.

Physical state: yellow oil.

¹**H NMR (500 MHz, CD₃OD-***d*₄**):** δ 7.22 (s, 2H), 6.85 (t, *J* = 2.1 Hz, 3H), 4.23–4.20 (m, 6H), 4.17 (t, *J* = 5.8 Hz, 2H), 4.03 (qt, *J* = 7.4 Hz, 8H), 3.87 (t, *J* = 4.3 Hz, 4H), 3.81 (t, *J* = 4.6 Hz, 2H), 3.76 (t, *J* = 5.8 Hz, 2H), 3.73–3.53 (m, 58H), 3.50 (t, *J* = 4.8 Hz, 4H), 3.33 (s, 6H), 3.19 (d, ²*J*_{*P*-*H*} = 21.5 Hz, 4H), 2.34–2.23 (m, 2H), 1.92–1.85 (m, 2H), 1.74–1.68 (m, 2H), 1.25 (t, *J* = 7.1 Hz, 12H) ppm

¹³C NMR (125 MHz, CD₃OD-*d*₄): δ 172.7, 169.5, 153.8, 142.2, 134.5, 132.6, 130.6, 125.2, 116.0, 107.8, 73.6, 72.9, 71.8—71.2 (several peaks), 70.8, 70.1, 68.7, 67.5, 63.7 (d, ${}^{2}J_{C-P}$ = 7.5 Hz), 59.1, 57.5, 40.8, 39.8, 34.1, 33.7 (d, ${}^{1}J_{C-P}$ = 157.9 Hz), 31.0, 24.4, 18.6, 16.7 (d, ${}^{3}J_{C-P}$ = 5.6 Hz) ppm

¹⁹F NMR (282 MHz, CD₃OD-d₄): δ -81.0, -114.7, -124.5, -126.0 ppm

³¹P NMR (202 MHz, CD₃OD-*d*₄): δ 27.2 ppm

MALDI-TOF: m/z calcd for $C_{74}H_{125}F_9N_3O_{28}P_2$ [M+H]⁺ 1736.772, found 1736.468

Part 4: General procedure for the deprotection of phosphonate dendrons

To a solution of dendron in CH_2Cl_2 (0.05 M) at RT was added TMSBr (8 to 15 equiv.). The resulting solution was heated to reflux for 2 h, then cooled to RT and quenched with MeOH. The orange solution was stirred at RT for another 15 min then concentrated under reduced pressure. The crude residue was purified by LH20, eluted with MeOH HPLC to afford the corresponding dendron phosphonic acid.

Starting from 3.7 mmol of dendron **28** with 5.0 mL of TMSBr (37.9 mmol, 10.0 equiv.). 4218.0 mg isolated (3.3 mmol, 90%).

Physical state: yellow gum.

¹**H NMR (300 MHz, CD₃OD-***d*₄): δ 7.21 (s, 2H), 6.81 (s, 3H), 4.21 (t, *J* = 4.4 Hz, 6H), 4.16 (t, *J* = 5.2 Hz, 2H), 3.87 (t, *J* = 4.6 Hz, 4H), 3.80 (t, *J* = 5.0 Hz, 2H), 3.76-3.49 (m, 64H), 3.33 (s, 6H), 3.05 (d, ²*J*_{*P*-*H*} = 22.4 Hz, 4H), 2.57 (t, *J* = 6.2 Hz, 2H) ppm

Spectral data matches the literature.^[2]

Starting from 0.05 mmol of dendron **29** with 0.1 mL of TMSBr (0.8 mmol, 15.0 equiv.). 50.3 mg isolated (0.05 mmol, 94%).

Physical state: yellow gum.

¹**H NMR (500 MHz, CD₃OD-***d*₄): δ 7.17 (s, 2H), 6.79 (s, 3H), 4.18 (t, *J* = 3.7 Hz, 6H), 4.13 (t, *J* = 5.6 Hz, 4H), 3.83 (t, *J* = 4.4 Hz, 6H), 3.77 (t, *J* = 4.7 Hz, 2H), 3.72—3.46 (m, 54H), 3.30 (s, 6H), 3.04 (d, ²*J*_{*P*-*H*} = 22.4 Hz, 4H), 2.53 (t, *J* = 6.0 Hz, 2H) ppm

¹³C NMR (125 MHz, CD₃OD-*d*₄): δ 173.7, 169.6, 160.1, 153.7, 142.3, 135.8, 130.4, 125.1, 115.5, 107.8, 73.6, 72.9, 71.7–71.3 (several peaks), 70.8, 70.1, 67.6, 62.2, 59.0, 52.1, 40.8, 35.7 ppm

³¹P NMR (202 MHz, CD₃OD-*d*₄): δ 23.9 ppm

MALDI-TOF: m/z calcd for $C_{44}H_{68}NO_{24}P_2$ [M-5H]⁺ 1056.880, found 1056.482

Starting from 0.17 mmol of dendron **32** with 0.2 mL of TMSBr (1.5 mmol, 9.0 equiv.). 161.0 mg isolated (0.15 mmol, 90%).

Physical state: yellow gum.

¹**H NMR (500 MHz, CD₃OD-***d*₄**):** δ 7.20 (s, 2H), 6.83 (s, 1H), 6.82 (s, 2H), 4.21 (t, *J* = 4.0 Hz, 6H), 4.16 (t, *J* = 5.5 Hz, 2H), 3.87 (t, *J* = 5.0 Hz, 4H), 3.80 (t, *J* = 4.7 Hz, 2H), 3.75–3.59 (m, 34H), 3.55–3.49 (m, 6H), 3.06 (d, ²*J*_{*P*-*H*} = 21.6 Hz, 4H) ppm

¹³C NMR (125 MHz, CD₃OD-d₄): δ 169.6, 160.2, 152.4, 141.0, 134.4, 129.1, 123.7, 114.1, 106.5, 73.6,
72.9, 71.7-71.5 (several peaks), 71.4, 71.3, 70.8, 70.1, 67.4, 62.2, 54.8, 40.8, 36.4, 35.3 ppm

³¹P NMR (202 MHz, CD₃OD-*d*₄): δ 23.9 ppm

MALDI-TOF: m/z calcd for $C_{44}H_{71}NO_{23}P_2$ [M-4H]⁺ 1043.426, found 1043.664

Starting from 0.04 mmol of dendron **36** with 80.0 μL of TMSBr (0.6 mmol, 17.0 equiv.). 51.9 mg isolated (0.03 mmol, 73%).

Physical state: yellow gum.

¹H NMR (500 MHz, CD₃OD-*d*₄): δ 7.19 (s, 4H), 7.04 (s, 2H), 6.83 (s, 1H), 6.78 (s, 2H), 6.73 (s, 1H), 4.22— 4.10 (m, 16H), 3.84—3.48 (m, 86H), 3.02 (d, ²*J*_{*P*-*H*} = 17.6 Hz, 4H) ppm

¹³C NMR (125 MHz, CD₃OD-*d*₄): δ 176.8, 169.6, 153.7, 142.3, 130.5, 115.5, 107.9, 73.6, 72.9, 71.7, 71.6,
71.5 (several peaks), 71.3, 70.7, 70.0, 62.2, 59.1, 40.7 ppm

³¹P NMR (202 MHz, CD₃OD-*d*₄): δ 23.1 ppm

MALDI-TOF: m/z calcd for $C_{89}H_{143}N_3O_{42}P_2$ [M-4H]⁺ 1987.892, found 1987.652

Starting from 0.05 mmol of dendron **38** with 0.1 mL of TMSBr (0.76 mmol, 15.0 equiv.). 71.5 mg isolated (0.03 mmol, 68%).

Physical state: yellow gum.

¹H NMR (500 MHz, CD₃OD-*d*₄): δ 7.18 (s, 4H), 7.03 (s, 2H), 6.83 (s, 1H), 6.79 (s, 2H), 6.72 (s, 1H), 4.20– 4.13 (m, 20H), 3.84 (t, *J* = 4.3 Hz, 8H), 3.78 (t, *J* = 4.9 Hz, 4H), 3.74–3.48 (m, 97H), 3.31 (s, 12H), 3.04 (d, ²*J*_{*P*-*H*} = 21.3 Hz, 4H), 2.55 (t, *J* = 6.2 Hz, 4H) ppm

¹³C NMR (125 MHz, CD₃OD-d₄): δ 173.7, 169.6, 161.4, 153.7, 142.3, 137.5, 130.4, 115.5, 107.9, 107.2, 105.9, 73.6, 72.9, 71.7, 71.6, 71.5 (several peaks), 71.4, 71.3, 70.8, 70.1, 67.6, 59.1, 52.1, 40.7, 35.7 ppm

³¹P NMR (202 MHz, CD₃OD-*d*₄): δ 23.7 ppm

MALDI-TOF: m/z calcd for $C_{93}H_{145}N_3O_{46}P_2$ [M-6H]⁺ 2101.905, found 2101.774

Starting from 0.03 mmol of dendron **39** with 0.2 mL of TMSBr (3.0 mmol, 101.0 equiv.). 52.4 mg isolated (0.02 mmol, 71%).

Physical state: yellow gum.

¹**H NMR (300 MHz, CD₃OD-***d*₄**):** δ 7.26 (s, 4H), 7.11 (s, 2H), 6.90 (s, 1H), 6.86 (s, 2H), 6.82 (s, 1H), 4.28 – 4.17 (m, 20H), 3.92 (t, *J* = 4.7 Hz, 8H), 3.87 – 3.54 (m, 130H), 3.38 (s, 12H), 3.09 (d, ²*J*_{*P*-*H*} = 21.2 Hz, 4H), 2.63 (t, *J* = 6.2 Hz, 4H) ppm

Spectral data matches the literature.^[2]

Starting from 0.03 mmol of dendron **40** with 0.1 mL of TMSBr (0.76 mmol, 25.0 equiv.). 43.2 mg isolated (0.02 mmol, 60%).

Physical state: yellow gum.

¹H NMR (500 MHz, CD₃OD-*d*₄): δ 7.19 (s, 4H), 7.04 (s, 2H), 6.84 (s, 1H), 6.78 (s, 2H), 6.74 (s, 1H), 4.21– 4.12 (m, 20H), 3.85 (t, *J* = 4.2 Hz, 8H), 3.79 (t, *J* = 4.4 Hz, 6H), 3.75–3.48 (m, 127H), 3.33 (s, 6H), 3.31 (s, 12H), 3.03 (d, ²*J*_{*P*-*H*} = 21.0 Hz, 4H) ppm

¹³C NMR (125 MHz, CD₃OD-d₄): δ 169.6, 161.4, 160.1, 153.7, 142.3, 137.6, 130.4, 115.5, 107.9, 107.3, 106.0, 73.6, 72.9, 71.7, 71.6, 71.5 (several peaks), 71.4, 71.3, 70.8, 70.0, 67.7, 62.2, 59.1, 40.7, 35.7 ppm

³¹P NMR (202 MHz, CD₃OD-*d*₄): δ 23.2 ppm

MALDI-TOF: m/z calcd for $C_{105}H_{175}N_3O_{50}P_2$ [M-4H]⁺ 2340.176, found 2340.650

Starting from 0.01 mmol of dendron **44** with 0.2 mL of TMSBr (1.5 mmol, 152.0 equiv.). 36.7 mg isolated (0.01 mmol, 80%).

Physical state: colorless gum.

¹H NMR (500 MHz, D₂O): δ 7.13 (s, 4H), 6.96 (s, 2H), 6.82 (s, 1H), 6.77 (s, 2H), 6.70 (s, 1H), 4.25–4.12 (m, 20H), 3.91-3.47 (m, 242H), 3.03 (d, ²*J*_{*P-H*} = 19.8 Hz, 4H), 2.64 (t, *J* = 5.8 Hz, 12H) ppm

¹³C NMR (125 MHz, D₂O): δ 174.6, 168.8, 159.7, 158.2, 151.9, 139.9, 135.6, 129.1, 114.1, 106.3, 72.1, 70.1, 69.8, 69.6, 69.5 (several peaks), 69.4, 69.1, 68.4, 66.1, 52.2, 39.5, 34.2 ppm

³¹P NMR (202 MHz, D₂O): δ 23.4 ppm

MALDI-TOF: m/z calcd for $C_{145}H_{237}N_3O_{76}P_2$ [M-10H]⁺ 3298.526, found 3298.142

Starting from 0.1 mmol of dendron **43** with 0.2 mL of TMSBr (1.5 mmol, 15.0 equiv.). 113.7 mg isolated (0.08 mmol, 81%).

Physical state: yellow gum.

¹H NMR (500 MHz, CD₃OD- d_4): δ 7.95 (s, 1H), 7.20 (s, 2H), 6.84 (s, 1H), 6.81 (s, 2H), 4.46 (t, J = 6.1 Hz, 2H), 4.23–4.19 (m, 6H), 4.16 (t, J = 5.8 Hz, 2H), 3.86 (t, J = 4.7 Hz, 4H), 3.79 (t, J = 4.7 Hz, 2H), 3.76–3.50 (m, 64H), 3.30 (s, 3H), 3.05 (d, ² $J_{P-H} = 20.2$ Hz, 4H), 2.48 (s, 3H), 2.35 (t, J = 5.0 Hz, 2H) ppm

¹³C NMR (125 MHz, CD₃OD-*d*₄): δ 174.5, 169.5, 160.1, 153.7, 142.3, 135.8, 132.2, 130.4, 125.1, 115.5, 107.9, 73.6, 73.5, 72.9, 71.7—71.5 (several peaks), 71.4, 71.3, 71.2, 70.8, 70.0, 67.8, 67.4, 62.2, 59.1, 46.8, 40.8, 39.6, 37.4, 36.0 (d, ${}^{1}J_{C-P}$ = 131.1 Hz), 13.9 ppm

³¹P NMR (202 MHz, CD₃OD-d₄): δ 23.9 ppm

MALDI-TOF: m/z calcd for $C_{60}H_{101}N_5O_{30}P_2$ [M-4H]⁺ 1429.606, found 1429.950

10

Starting from 0.04 mmol of dendron **47** with 0.2 mL of TMSBr (1.5 mmol, 76.0 equiv.). 55.6 mg isolated (0.03 mmol, 72%).

Physical state: yellow gum.

¹H NMR (500 MHz, CD₃OD-*d*₄): δ 8.02 (s, 2H), 7.25 (s, 2H), 6.85 (s, 1H), 6.83 (s, 2H), 4.50 (t, *J* = 5.4 Hz, 4H), 4.24—4.22 (m, 8H), 4.168(t, *J* = 5.6 Hz, 2H), 3.88 (t, *J* = 4.7 Hz, 6H), 3.81 (t, *J* = 4.7 Hz, 2H), 3.76 (t, *J* = 5.4 Hz, 2H), 3.74—3.53 (m, 97H), 3.36 (s, 3H), 3.08 (d, ²*J*_{P-H} = 21.6 Hz, 4H), 2.52 (s, 6H), 2.37 (t, *J* = 5.8 Hz, 4H) ppm

¹³C NMR (125 MHz, CD₃OD-d₄): δ 174.6, 169.5, 160.1, 153.7, 152.2, 142.3, 140.2, 135.8, 131.6, 130.4, 125.1, 115.5, 107.9, 73.6, 73.5, 72.9, 71.7, 71.6—71.4 (several peaks), 71.3, 71.2, 70.8, 70.1, 67.8, 67.4, 62.2, 59.1, 46.9, 40.8, 39.5, 37.4, 35.9 (d, ¹J_{CP} = 135.7 Hz), 13.8 ppm

³¹P NMR (202 MHz, CD₃OD-*d*₄): δ 23.9 ppm

MALDI-TOF: m/z calcd for $C_{76}H_{123}N_9O_{37}P_2$ [M-4H]⁺ 1815.788, found 1815.190

Starting from 0.03 mmol of dendron **49** with 0.2 mL of TMSBr (1.5 mmol, 48.0 equiv.). 35.6 mg isolated (0.02 mmol, 78%).

Physical state: colorless foam.

¹H NMR (500 MHz, CD₃OD-*d*₄): δ 7.24 (s, 2H), 6.83 (s, 1H), 6.79 (s, 2H), 4.22 (t, *J* = 4.3 Hz, 6H), 4.15 (t, *J* = 5.6 Hz, 2H), 3.87 (t, *J* = 4.5 Hz, 4H), 3.81 (t, *J* = 4.5 Hz, 2H), 3.76-3.49 (m, 60H), 3.33 (s, 6H), 3.09-3.06 (m, 2H), 3.03 (d, ²*J*_{*P*-*H*} = 21.4 Hz, 4H), 2.65-2.58 (m, 2H), 2.29-2.19 (m, 2H), 1.86-1.79 (m, 2H), 1.64-1.57 (m, 2H) ppm

¹³C NMR (125 MHz, CD₃OD-d₄): δ 172.3, 169.6, 160.2, 153.8, 142.3, 136.6, 130.4, 129.7, 125.2, 115.2, 108.0, 73.6, 72.9, 71.9, 71.8—71.3 (several peaks), 70.8, 70.1, 68.5, 67.4, 62.6, 59.1, 57.3, 53.0, 52.6, 43.8, 41.0, 39.5, 36.8, 35.8, 34.2, 33.9, 23.9 ppm

¹⁹F NMR (282 MHz, CD₃OD-*d*₄): δ -67.8 ppm

³¹P NMR (202 MHz, CD₃OD-*d*₄): δ 22.6 ppm

MALDI-TOF: m/z calcd for $C_{63}H_{104}F_3N_3O_{28}P_2$ [M-4H]⁺ 1469.656, found 1469.204

Starting from 0.03 mmol of dendron **50** with 0.2 mL of TMSBr (1.5 mmol, 51.0 equiv.). 34.8 mg isolated (0.02 mmol, 79%).

Physical state: colorless foam.

¹**H NMR (500 MHz, CD₃OD-***d*₄**)**: δ 7.25 (s, 2H), 6.84 (s, 1H), 6.79 (s, 2H), 4.22 (t, *J* = 4.5 Hz, 6H), 4.15 (t, *J* = 5.5 Hz, 2H), 3.87 (t, *J* = 4.7 Hz, 4H), 3.80 (t, *J* = 4.7 Hz, 2H), 3.76–3.50 (m, 52H), 3.33 (s, 6H), 3.12–3.09 (m, 2H), 3.03 (d, ²*J*_{*P*-*H*} = 21.1 Hz, 4H), 2.65–2.62 (m, 2H), 2.27–2.16 (m, 2H), 1.88–1.82 (m, 2H), 1.68–1.62 (m, 2H) ppm

¹³C NMR (125 MHz, CD₃OD-d₄): δ 172.3, 169.5, 160.1, 153.8, 142.4, 136.6, 130.5, 115.3, 107.8, 73.6, 73.0, 71.9, 71.7-71.3 (several peaks), 70.8, 70.1, 68.5, 67.4, 62.2, 59.1, 57.3, 41.0, 39.6, 34.2, 24.2 ppm

¹⁹F NMR (282 MHz, CD₃OD-*d*₄): δ -86.9, -119.4 ppm

³¹P NMR (202 MHz, CD₃OD-*d*₄): δ 22.7 ppm

MALDI-TOF: m/z calcd for $C_{64}H_{104}F_5N_3O_{28}P_2$ [M-4H]⁺ 1519.651, found 1519.002

Starting from 0.03 mmol of dendron **51** with 0.2 mL of TMSBr (1.5 mmol, 51.0 equiv.). 43.0 mg isolated (0.03 mmol, 80%).

Physical state: colorless foam.

¹H NMR (500 MHz, CD₃OD-*d*₄): δ 7.25 (s, 2H), 6.83 (s, 1H), 6.78 (s, 2H), 4.22 (t, *J* = 4.5 Hz, 6H), 4.14 (t, *J* = 5.6 Hz, 2H), 3.87 (t, *J* = 4.7 Hz, 4H), 3.80 (t, *J* = 4.6 Hz, 2H), 3.76–3.50 (m, 74H), 3.33 (s, 6H), 3.10–3.06 (m, 2H), 3.02 (d, ²*J*_{*P*-*H*} = 21.0 Hz, 4H), 2.64–2.59 (m, 2H), 2.32–2.21 (m, 2H), 1.89–1.83 (m, 2H), 1.70–1.63 (m, 2H) ppm

¹³C NMR (125 MHz, CD₃OD-*d*₄): δ 172.3, 169.5, 160.1, 153.8, 142.4, 136.6, 130.5, 125.3, 115.3, 108.9,
79.3, 73.6, 73.0, 72.1, 71.9—71.3 (several peaks), 70.8, 70.0, 68.5, 67.4, 62.2, 59.1, 57.3, 52.9, 52.5,
43.7, 41.0, 39.6, 34.2, 30.8, 24.2, 18.7 ppm

¹⁹F NMR (470 MHz, CD₃OD-*d*₄): δ -82.6, -115.6, -125.3, -127.1 ppm

³¹P NMR (202 MHz, CD₃OD-*d*₄): δ 22.4 ppm

REFERENCES

[1] H. Choi, H. J. Shirley, P. a. Hume, M. a. Brimble, D. P. Furkert, *Angew. Chemie - Int. Ed.* **2017**, *56*, 7420–7424.

[2] A. Garofalo, A. Parat, C. Bordeianu, C. Ghobril, Ma. Kueny-Stotz, A. Walter, J. Jouhannaud, S.
 Begin-Colin, D. Felder-Flesch, *New J. Chem.* 2014, 5226–5239.

[3] M. L. Miller, E. E. Roller, R. Y. Zhao, B. a. Leece, O. Ab, E. Baloglu, V. S. Goldmacher, R. V. J.
 Chari, J. Med. Chem. 2004, 47, 4802–4805.

- [4] C. a. Traina, R. C. Bakus, G. C. Bazan, J. Am. Chem. Soc. 2011, 133, 12600–12607.
- [5] F. Leng, X. Wang, L. Jin, B. Yin, *Dye. Pigment.* **2010**, *87*, 89–94.
- [6] D. S. Mei, Y. Qu, J. X. He, L. Chen, Z. J. Yao, *Tetrahedron* **2011**, *67*, 2251–2259.
- [7] A. Sarkar, P. Ilankumaran, P. Kisanga, J. G. Verkade, *Adv. Synth. Catal.* **2004**, *346*, 1093–1096.
- [8] J. Giglio, S. Fernández, A. Rey, H. Cerecetto, *Bioorganic Med. Chem. Lett.* **2011**, *21*, 394–397.

NMR Spectra Compound 14 – ¹H NMR (300 MHz, CDCl₃)

Compound 15 – ¹H NMR (300 MHz, CDCl₃)

Compound 17 – ¹H NMR (500 MHz, CDCl₃)

Compound $17 - {}^{31}P$ NMR (202 MHz, CDCl₃)

Compound 18 – ¹H NMR (300 MHz, CDCl₃)

Compound 19 – ¹H NMR (300 MHz, CDCl₃)

Compound 21 – ¹H NMR (300 MHz, CDCl₃)

Compound 20 – ¹H NMR (300 MHz, CDCl₃)

Compound 22 – ¹H NMR (300 MHz, CDCl₃)

Compound 23 – ¹H NMR (300 MHz, CDCl₃)

Compound 25 – ¹H NMR (300 MHz, CDCl₃)

Compound 24 – ¹H NMR (500 MHz, CDCl₃)

Compound 24 – ¹³C NMR (125 MHz, CDCl₃)

Compound 27 – ¹H NMR (300 MHz, CDCl₃)

Compound 28 – ¹H NMR (300 MHz, CDCl₃)

Compound 29 – ¹H NMR (500 MHz, CDCl₃)

Compound 29 – ¹³C NMR (125 MHz, CDCl₃)

Compound 29 – 31 P NMR (202 MHz, CDCl₃)

Compound $30 - {}^{1}H$ NMR (500 MHz, CDCl₃)

Compound $30 - {}^{13}C$ NMR (125 MHz, CDCl₃)

Compound 31 – ¹H NMR (500 MHz, CDCl₃)

Compound $31 - {}^{13}C$ NMR (125 MHz, CDCl₃)

Compound $32 - {}^{1}H$ NMR (500 MHz, CDCl₃)

Compound 32 – ¹³C NMR (125 MHz, CDCl₃)

Compound $32 - {}^{31}P$ NMR (202 MHz, CDCl₃)

Compound 33 – ¹H NMR (300 MHz, CDCl₃)

Compound 34 – ¹H NMR (300 MHz, CDCl₃)

Compound 35 – ¹H NMR (500 MHz, CDCl₃)

Compound 35 – ¹³C NMR (125 MHz, CDCl₃)

Compound $36 - {}^{1}H$ NMR (500 MHz, CD₃OD- d_4)

Compound 36 – ¹³C NMR (125 MHz, CD_3OD-d_4)

Compound $36 - {}^{31}P$ NMR (202 MHz, CD₃OD- d_4)

Compound $38 - {}^{31}P$ NMR (202 MHz, CD₃OD-d₄)

Compound $39 - {}^{1}H$ NMR (500 MHz, CD₃OD- d_4)

Compound $40 - {}^{1}H$ NMR (500 MHz, CD₃OD- d_4)

Compound 40 – 13 C NMR (125 MHz, CD₃OD- d_4)

Compound 40 – ³¹P NMR (202 MHz, CD₃OD- d_4)

Compound 41 – ¹H NMR (500 MHz, CDCl₃)

Compound 41 – ¹³C NMR (125 MHz, CDCl₃)

Compound 42 – ¹H NMR (500 MHz, CDCl₃)

Compound 42 – ¹³C NMR (125 MHz, CDCl₃)

Compound 43 – ¹H NMR (500 MHz, CDCl₃)

Compound 43 – ¹³C NMR (125 MHz, CDCl₃)

Compound $44 - {}^{1}H$ NMR (500 MHz, CD₃OD- d_4)

Compound 44 – 13 C NMR (125 MHz, CD₃OD- d_4)

Compound 45 – ¹H NMR (500 MHz, CDCl₃)

Compound 45 – ¹³C NMR (125 MHz, CDCl₃)

Compound 46 – ¹H NMR (300 MHz, CDCl₃)

Compound 46 – ¹³C NMR (125 MHz, CDCl₃)

Compound 46 – ³¹P NMR (121 MHz, CDCl₃)

Compound 47 – ¹H NMR (300 MHz, CDCl₃)

Compound 47 – ¹³C NMR (125 MHz, CDCl₃)

Compound 48 – ¹³C NMR (125 MHz, CDCl₃)

Compound 49 – ¹H NMR (500 MHz, CDCl₃)

Compound 49 – ¹³C NMR (125 MHz, CDCl₃)

Compound 50 – ¹H NMR (500 MHz, CDCl₃)

Compound 50 – ¹³C NMR (125 MHz, CDCl₃)

Compound 50 – ³¹P NMR (202 MHz, CDCl₃)

Compound 51 – ¹³C NMR (125 MHz, CDCl₃)

Compound $51 - {}^{31}P$ NMR (202 MHz, CDCl₃)

Compound 52 – ¹H NMR (500 MHz, CD₃OD- d_4)

Compound 52 – ¹³C NMR (125 MHz, CD₃OD- d_4)

Compound 52 – ¹⁹F NMR (470 MHz, CD₃OD- d_4)

Compound 53 – ¹H NMR (500 MHz, CD₃OD- d_4)

Compound 53 – 13 C NMR (125 MHz, CD₃OD- d_4)

Compound 53 – ¹⁹F NMR (470 MHz, CD₃OD- d_4)

Compound 54 – 13 C NMR (125 MHz, CD₃OD- d_4)

Compound 54 – ¹⁹F NMR (282 MHz, CD₃OD- d_4)

Compound 54 – ³¹P NMR (202 MHz, CD₃OD- d_4)

Compound 55 – ¹H NMR (500 MHz, CDCl₃)

Compound 55 – ¹³C NMR (125 MHz, CDCl₃)

Compound 55 – ¹⁹F NMR (282 MHz, CDCl₃)

Compound 55 – ³¹P NMR (202 MHz, CDCl₃)

Compound 2 – ¹³C NMR (125 MHz, CD_3OD-d_4)

Compound 2 – ³¹P NMR (202 MHz, CD_3OD-d_4)

Compound 3 – 13 C NMR (125 MHz, CD₃OD- d_4)

Compound 4 – 13 C NMR (125 MHz, CD₃OD-d₄)

Compound 4 – ³¹P NMR (202 MHz, CD_3OD-d_4)

Compound 5 – ¹H NMR (500 MHz, CD₃OD- d_4)

Compound 5 – 13 C NMR (125 MHz, CD₃OD- d_4)

Compound 6 – ¹H NMR (300 MHz, CD_3OD-d_4)

Compound 7 – ¹³C NMR (125 MHz, CD₃OD- d_4)

Compound 7 – ³¹P NMR (202 MHz, CD_3OD-d_4)

Compound 8 – 13 C NMR (125 MHz, D₂O)

Compound 9 – ¹H NMR (500 MHz, CD₃OD- d_4)

Compound 9 – ¹³C NMR (125 MHz, CD₃OD- d_4)

Compound 9 – ³¹P NMR (202 MHz, CD_3OD-d_4)

Compound $10 - {}^{1}H$ NMR (500 MHz, CD₃OD- d_4)

Compound $10 - {}^{13}C$ NMR (125 MHz, CD₃OD-d₄)

Compound $10 - {}^{31}P$ NMR (202 MHz, CD₃OD- d_4)

Compound $11 - {}^{1}H$ NMR (500 MHz, CD₃OD- d_4)

Compound $11 - {}^{13}C$ NMR (125 MHz, CD₃OD- d_4)

Compound $11 - {}^{31}P$ NMR (202 MHz, CD₃OD-d₄)

Compound $11 - {}^{19}F$ NMR (470 MHz, CD₃OD- d_4)

Compound $12 - {}^{13}C$ NMR (125 MHz, CD₃OD- d_4)

Compound $12 - {}^{31}P$ NMR (202 MHz, CD₃OD- d_4)

Compound $12 - {}^{19}F$ NMR (470 MHz, CD₃OD- d_4)

Compound $13 - {}^{1}H$ NMR (500 MHz, CD₃OD- d_4)

Compound $13 - {}^{13}C$ NMR (125 MHz, CD₃OD-d₄)

Compound $13 - {}^{31}P$ NMR (202 MHz, CD₃OD-d₄)

Compound $13 - {}^{19}F$ NMR (470 MHz, CD₃OD-d₄)

Functionnalization of nanoparticles

Figure 1 : Variation of Dynamic light scattering (DLS) with the ratio of ligand **9**

The DLS measurements assess the good colloidal stability of the nanoparticles after functionalization. A slight shift is observed when ligand **9** was introduced, which could be attributed to the influence of long chain of OEG.

Figure 2 : Comparison of IR spectra before and after functionalization with different ratio of ligand **9**

The functionalization is confirmed by the disappearance of the alkyl bands (2926-2850 cm⁻¹) and the apparition of the OEG characteristic signal (1096 cm⁻¹). No major distinction can be made between the different ratio of **9**:**1**.

Figure 3 : Monitoring the purification by ultrafiltration with UV-Visible measurement

During the filtration step, the amount of dendron in the filtrate is monitored by UV-visible spectroscopy. The signal of the dendron (about 280 nm) in the filtrate decreases with the filtration step.