Electronic supplementary information

Near-infrared luminescence and magnetism of dinuclear complexes with different local symmetries constructed by β -diketonate coligand and bis-Schiff base ligand

Huan-Huan Chen,^a Dong-Fang Wu,^a Yao-Yao Duan,^a Ling Li,^a Yun-Juan Wang,^a Xue-Mei Zhang,^a Jian-Zhong Cui^{*a,b} and Hong-Ling Gao^{*a,b}

List of Contents

Supplementary Experimental section

Fig. S1 ¹H NMR spectrum (400 MHz, d_6 -DMSO) of H₂L.

Fig. S2 IR spectra of a crystalline sample of H₂L.

Table S1 The important bond lengths (Å) and angles (°) of complexes 1-5.

Fig. S3 PXRD patterns for complexes 1-5.

Fig. S4 PXRD patterns for complexes 1-5 exposed different times in the air.

Fig. S5 PXRD patterns for complexes 1-5 in different solvents.

Fig. S6 TGA curves of complexes 1-5 on crystalline sample under the air atmosphere

in the temperature range of 30-800 °C.

Fig. S7 UV-Vis absorption spectra of complexes 1-5 in dichloromethane solution at room temperature.

Fig. S8 The luminescence spectra of complexes 1-2 and ligands (H_2L , dbm⁻) in dichloromethane solution at room temperature.

Fig. S9 Temperature dependence of χ' (a) and χ'' (b) signals of the *ac* susceptibilities under different frequency (Hz) for **2** ($H_{ac} = 3$ Oe, $H_{dc} = 0$ Oe).

^aDepartment of Chemistry, Tianjin University, Tianjin, 300354, China.

^{*} Corresponding authors, E-mail: cuijianzhong@tju.edu.cn, ghl@tju.edu.cn.

^bKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China.

1. The instruments and test conditions

The elemental composition of the samples including C, H and N were analysed by a Perkin Elmer 240 CHN elemental analyzer. IR spectra were obtained on a Bruker TENSOR 27 spectrometer in 4000-400 cm⁻¹ adopting the KBr pellet. Powder X-ray diffraction (PXRD) patterns were gained utilizing Cu/K α radiation on a Rigaku D/Max 2500v/pc X-diffractometer in the region of $2\theta = 5-50^{\circ}$. TGA were measured by a NETSCH 409 PC instrument during 30-800 °C in air. UV-Vis spectra were obtained by a TU-1901. Luminescence properties were recorded on an F-4500 FL spectrophotometer with a xenon arc lamp as the light source at room temperature. NIR spectra were acquired on a Nanolog FL3-2iHR infrared fluorescence spectrophotometer. Magnetic tests were completed utilizing the PPMS-9 ACMS magnetometer.

Single-crystal data of 1-5 were collected by the ω - ϕ scanning technique and the wavelength λ = 0.71073 Å on a computer-controlled Rigaku Saturn 724 CCD area detector diffractometer with confocal monochromated Mo-*Ka* at in the range of temperature 113-133 K. The crystal structures were solved using direct means with the SHELXL-2018 program. In view of F² with SHELX-2018 program, the crystal structures were refined via full matrix least-squares methods. Anisotropic thermal parameters were allotted to all non-hydrogen atoms.

Fig. S1 ¹H NMR spectrum (400 MHz, d_6 -DMSO) of H₂L.

Fig. S2 IR spectra of a crystalline sample of H_2L .

Table S1 The important bond lengths (Å) and angles (°) of complexes 1-5.			
Complex	The range of Ln-O	The range of Ln-N	The range of Ln-O-Ln
	bond lengths / Å	bond lengths / Å	bond angles / o
1	2.277(3) - 2.685(3)	2.481(4) - 2.489(3)	110.52(11) - 113.31(11)
2	2.294(2) - 2.690(3)	2.487(3) - 2.494(3)	110.73(10) - 113.30(10)
3	2.277(4) - 2.675(4)	2.478(4) - 2.480(5)	110.83(14) - 113.53(14)
4	2.269(4) - 2.684(4)	2.470(5) - 2.477(5)	110.64(16) - 113.70(16)
5	2.238(4) - 2.678(5)	2.456(6) - 2.468(5)	110.24(17) - 113.67(19)

Fig. S3 PXRD patterns for complexes1-5.

Fig. S4 PXRD patterns for complexes 1-5 exposed different times in the air.

Fig. S5 PXRD patterns for complexes 1-5 in different solvents.

Fig. S6 TGA curves of complexes 1-5 on crystalline sample under the air atmosphere in the temperature range of 30-800 °C.

Fig. S7 UV-Vis absorption spectra of complexes 1-5 in dichloromethane solution at room temperature.

Fig. S8 The luminescence spectra of complexes **1-2** and ligands (H₂L, dbm⁻) in dichloromethane solution at room temperature.

Fig. S9 Temperature dependence of $\chi'(a)$ and $\chi''(b)$ signals of the *ac* susceptibilities under different frequency (Hz) for 2 ($H_{ac} = 3$ Oe, $H_{dc} = 0$ Oe).