Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

SUPPORTING INFORMATION FOR

Bimetallic BaMoO₄ Nanoparticle for C-S Cross-Coupling of Thiols with Haloarene

Subhalaxmi Panda,^a Santosh Kumar Sahu,^a Pradyota K. Behera,^a Reba Panigrahi,^a Bamaknta Garnaik,^a and Prof. Laxmidhar Rout^{*[a]}

^{a*}Dept. of Chemistry, Berhampur University, Odisha-760007, India.

Corresponding Author: ldr.chem@buodisha.edu.in, routlaxmi@gmail.com

Table of Contents

SI No	Content	Page No
1	Table of Contents	S2
2	General Information	S3
3	The Synthesis of Bimetallic BaMoO ₄ Nano Catalyst	S4-S5
4	Catalyst Characterisation, SEM, EDX, XPS, IR	S6-S12
5	General experimental set up and procedure	S13
6	Optimization and Control Experiments	S14
7	Recyclability test	S15-S18
8	Proposed Mechanism	S19
9	Multi-Gram scale reaction and General Procedure	S20
10	Characterizations of products	S21-S32
11	¹ H NMR and ¹³ C NMR Spectra of New Compounds	S33-S76

GENERAL INFORMATION

DMSO (99.9%), Toluene (99.8%), DMF (99.8%), t-BuOH (99.5%), 1,4-Dioxane (99.8%), Acetonitrile (99.8%) and Deuteriated NMR solvents CDCl₃ (99.8%) CD₃CN (99.8%) is purchased from Sigma-Aldrich. All other solvents is purchased from Merck of high purity grade. Acetonitrile (99.8%) was sparged with nitrogen (N₂) for 10 min at room temperature and stored under nitrogen atmosphere. 4-Bromoacetophenone (99%), 4-Chloroacetophenone (99%), 4-nitroiodobenzene (98%), Iodobenzene (98%), 4-Methoxyiodobenzene (98%), 4-Methyliodobenzene (99%), Bromobenzene (98%), Chlorobenzene (99.8%). All thiols such as Thiophenol(98%), Cyclohexane thiol(97%), Cyclopentane thiol(97%), 2-bromobenzene thiol(97%), 4-bromobenzenethiol(95%), 2-chlorobenzene thiol(97%), 4-methylbenzenethiol(98%), Barium Nitrate **Ba(NO₃)**₂ (99.99%), (**NH**₄)₆ **Mo**₇**O**₂₄.4**H**₂**O** (99.98%), and Cs₂CO₃ (*ReagentPlus®*, 99%) and KOH (99%), K₂CO₃ (99%), KO^{t-} Bu(99%) was purchased from Sigma-Aldrich.

Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator using a water bath. The ¹H and ¹³C NMR spectra were recorded at 300 MHz, 400 MHz or 500 MHz for ¹H or at ⁷⁵MHz, ¹⁰⁰MHz or ¹²⁵MHz for ¹³C NMR, respectively. Deuterated solvents were purchased from Sigma-aldrich and used as received. All ¹H NMR experiments are reported in δ units, parts per million (ppm), and were measured relative to the signals for residual chloroform (7.26 ppm) in the deuterated solvents. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = quintet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets...etc, br = broad), coupling constant (Hz) and integration. All ¹³C NMR spectra are reported in ppm relative to CDCl₃ (77.0 ppm). 1,4-diiodobenzene was used as an internal standard for NMR yields from proton analysis for the C-S bond formation reaction. Elemental analysis is performed in 2400 Series II CHNS/O analyser in CHNS mode.

Flash column chromatography was performed by using a 100-150 times weight excess of flash silica gel 40-63 µm from Aldrich. Fractions were analyzed by TLC using TLC silica gel F254 250 µm precoated-plates from Merck and permanganate stain was used for UV-inactive compounds. ESI mass spectrometry analysis was performed at the University of Hydrabad and IIT Guwahati, mass spectrometry facility with multi-mode (combined ESI and APCI). Melting point is determined in Digital melting point apparatus, Electronics India (EI)-2935 model; Visualised through LCD Screen and is uncorrected by ±5 °C. Sample purity was determined using 2,4,6-trimehoxybenzene, Internal Standard. XPS is with AI-K□ line at IIT Roorke. HRMS is done at University of Hydrabad in ESI mode.

S-3

The Synthesis of Bimetallic BaMoO₄ Nano Catalyst

1gm of $(NH_4)_6Mo_7O_{24}.4H_2O$ (Purchased from Sigma-aldrich, 99.98%), dissolved in 150 ml distilled water and (1.19 gm) of **Ba**(NO₃)₂ (Purchased from Sigma-aldrich 99.99%) dissolved in 150 ml distilled water, respectively. Then Ba $(NO_3)_2$ solution was heated at 50 °C for 10 min and finally the ammonium molybdate solution was added drop wise to this solution. After adding two- third portion a white precipitate was obtained and added completely. The solution was heated at 50 °C and finally treated with ultrasonic irradiation with power 100W. The white product was filtered with whatman filterpaper 42, washed with distilled water and ethanol several times. The final product obtained was dried at 100°C for 60min. The product was characterized in TEM and IR.

Figure-1: Clear aqueous solution of both before mixing them

Figure 2: Formation of BaMoO₄ nanoparticle after Mixing

Figure 3: $BaMoO_4$ nanoparticles after Sonication and drying

Catalyst Characterization

The catalyst obtained was dried at 100°C for 60minute. The catalyst has been characterized by SEM, EDX, XPS and IR spectroscopy. The SEM reveals that the nanocatalyst has rectangular rod shaped structure with particle size 6-15 nm in width and 15-30 nm in length (Figure 4-7). The XPS and IR study reveals presence of species Mo(VI) along with Mo-O-Ba bond.^[1] The strong, broad intensive band peak observed at 796 cm-1 was due to symmetric or antisymmetric stretching vibrations of the molybdate ion (MoO^{2^-}) (Busy and Keller 1964). The very weak line observed at 1650 cm⁻¹ was the first overtone of the line at 796 cm⁻¹. The strong line at 370 cm⁻¹ was the antisymmetric bending vibration and the lines at 325 and 290 cm⁻¹ were due to the symmetric bending vibration of the molybdate ion (Clark and Doyle 1966). The band at 1330cm -~ was indicative of the vibration of oxygen ion for pure molybedenum and barium. The peaks at 516 cm⁻¹ and 478 cm⁻¹ were related to the Mo-O-Mo bands which agreed with Tsutomu *et al* (1980) and Nakamoto (1978). The peaks at 796, 370 cm⁻¹ were assigned to the characteristic absorption bands relating to $(MoO_4)^4$; Mo=O bond 1022, 912 cm-1, Ba-O-Mo (796, 396, 1695 cm⁻¹) Ba-O (636.5, 584.4, 504.3 cm-1).^[2,6]

- a) R. H, Busy, O. L. Jr. Keller J. Chem. Phys. 1964, 41 215; b) Q. M. Clark, W. P. Doyle Spectrochim Acta W P 1966, 22 1441; c) M. Tsutornu, T. Nasami J. Non Cryst. Solids, 1980, 38 39-289; d) J. Isac, M. A. Ittyachen, Bull. Mater. Sci., 1992, 15, 349
- 2. A. Phuruangrat, B. Kuntalue, T. Thongtem, S. Thongtem, Materials Science-poland, 2015, 33, 537
- 3. L. Krishnabharat, S. Hyun lee, J. Su yu, Materials Research Bulletin, 2014, 53, 49.
- 4. S. Vidya, A. John, S. Solomon, J. K. Thomas, Advances in Materials Research, 2012, 3, 191.
- 5. J.C. Sczancoski, I. S. Cavalcante, N. L. Marana, R. O. da Silva, R. L. Tranquilin, M. R. Joya, P. S. Pizani, J. A. Varela, I.R. Sambrano, B. M. Siu lid, J. Andrés e *Current Applied Physics* 2010, **10**, 614
- 6. A. Marquesa, D. M. A. de Meloa, P. Paulo s. E. Longo, Journal of Solid State Chemistry, 2006, 179, 658.

Figure 4: Morphology of BaMoO₄ Nanoparticles showing average particle size 6-30nm in SEM

Figure 5: EDXRF of BaMoO₄ nanocatalyst

Element	Арр	Intensity	Weight%	Weight%	Atomic%	
	Conc.	Corrn.		Sigma		
ОК	25.01	0.8143	35.03	0.78	78.49	
Mo L	29.81	0.8408	40.44	0.79	15.11	
Ba L	17.89	0.8320	24.52	0.68	6.40	
Totals			100.00			

X-RAY PHOTOELECTRON Spectra of BaMoO4 catalyst

Al mono 24.6 W 100.0 _ 45.0 _ 55.00 eV

Figure 7: IR spectra of Original Catalyst;

Figure 7a: IR spectra of Original Catalyst; (Expanded Version)

General experimental set up and procedure

An oven dried 25 mL of 3-necked round bottom flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with KOH (78 mg, 1.4 eq.), 4-nitroiodobenzene (248.93 mg, 1 mmol), Thiophenol (110.02 mg, 1 mmol), BaMoO₄ 3 mol% (9 mg) and 1 mL CH₃CN. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an oil bath with stirring maintained at 75°C. The three necked flask is equipped with condenser in one neck, N₂ ballon in second neck and third neck was stopped with Teflon cork as showed in Figure 6. The reaction is monitored after every 2 hr up to 24hr with the help of TLC and KMnO₄ Stain.

Figure: 8. General Reaction set up at Dept. Of Chemistry, Berhampur University, Odisha, India on 22/06/2018

After the time specified in the reaction schemes, the reaction mixture was cooled and concentrated in rotor. Then 5 ml of CH₂Cl₂ is added and catalyst was filtered with whatmann filter paper-40. The filtrate was washed with water, concentrated in rotor and subjected for flash column chromatography using with 230-400 Silica Gel using ethylacetate and hexane as eluent to afford corresponding product. All yields are reported after column chromatography.

Optimization and Control Experiments

	SH +	3 mol% BaMoO₄ nano Base, 80 °C Solvent	S		
SI No	Solvent	Base	Temp.(°C)	Yield% ^[a,b]	
1	Toluene	KOH	80	15	
2	1,4-dioxane	KOH	80	20	
3	t-BuOH	KOH	80	25	
4	CH ₃ CN	КОН	80	92	
5	DMF	KOH	80	50	
6	CH₃CN	KOH	75	80	
7	CH₃CN	Pyridine	80	0	
8	CH₃CN	NEt ₃	80	5	
9	CH₃CN	Cs ₂ CO ₃	80	35	
10	CH₃CN	K ₂ CO ₃	80	25	
11	CH₃CN	t-BuOK	80	20	
12	CH₃CN	КОН	80	0 ^[c]	
13	CH₃CN	-	80	0 ^[d]	
14	CH₃CN	K ₃ PO ₄	80	0	
15	CH₃CN	KOH	80	0 ^[e]	
16	CH₃CN	КОН	80	0 ^[1]	
[a]Catalyst 3 mol% (3 mg), Thiophenol(0.3 mmol), iodobenzene(0.33 mmol), Base 1.4 equiv. is stirred under N ₂ atomsphere for 12h. [b] isolated yield. [c] No catalyst, [d] No base. [e] Ba(NO ₃) ₂ as catalyst. [f] (NH ₄)MoO ₄ as catalys. All are isolated yields					

RECYCLABILITY TEST:

After the time specified in the reaction schemes, the reaction mixture was cooled and concentrated in rotor. Then 5 ml of CH₂Cl₂ is added and catalyst was filtered with whatmann filter paper-40. The filtrate was washed with water, concentrated in rotor and subjected for column chromatography using with 230-400 Silica Gel using ethylacetate and hexane as eluent to afford corresponding product. All yields are reported after column chromatography.

The Catalyst in the Whatmann filter paper-40 was washed with 5 ml of dichloromethane and 5 ml of water. The catalyst in filter paper was dried with suction pump followed by 100 °C in Oven for 2h. IR spectra of catalyst reveals the same peak after the catalyst is recovered (See Spectra, Fig.-8-9). The catalyst is subjected to further reaction of fresh batch of thiols and haloarene in presence of base KOH. The reaction proceeded with>80% of yield under similar condition. The catalyst has been tested for another two cycles for catalyzing the reaction.

SI No	Runs	Catalyst	Recovered catalyst	Yield% ^[a,b]
1	First Run	9 mg	8.7 mg	92
2	Second Run	8.7mg	8.5 mg	92
3	Third Run	8.5mg	8.3 mg	92
4	Forth Run	8.3 g	8.1 mg	91
5	Fifth Run	8.1 mg	8 mg	91

^aCatalyst 3 mol% (9 mg), Thiol(1 mmol), iodobenzene(1.1 mmol), Base 1.4 equiv. ^bisolated yield.

Figure 9: IR of recovered catalyst after reaction

X-RAY PHOTOELECTRON Spectra of Recycled BaMoO4 catalyst

Al mono 24.6 W 100.0 _ 45.0_ 55.00 eV

Figure: 10 XPS Spectra of Ba⁺² after recycle of Catalyst

Figure: 11 XPS Spectra of Mo⁺⁶ after recycle of Catalyst

Mechanism Study

From the result obtained in the manuscript, it is clear that, the reaction has a characteristic of Oxidative addition followed by reductive elimination. With substituted iodobenzene, we did not found any regioselective product or benzyne products.

We have attempted to figure out a possible mechanism for the above reaction (Figure 12). The result of scheme 1-4 reveals that, the reaction has a characteristic of oxidative addition followed by reductive elimination. The XPS and IR study reveals presence of species Mo(VI) **a along** with Mo-O-Ba bond. In BaMoO₄ nanocluster, Mo(VI) has high reduction potential than barium(II). We anticipate that molybdenum might be completing the cycle through possible intermediates **a-e.** The nanocluster is stabilised well by acetonitrile solvent. It is anticipated that, the above intermediates were stabilised by the nanocluster electrons in acetonitrile solvent.

Figure 12. Proposed Mechanism for BaMoO₄ catalysed C-S cross-coupling reaction

GRAM SCALE REACTION:

An oven dried 100 mL of 3-necked round bottom flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with KOH (784 mg, 1.4 eq., 14 mmol), iodobenzene (2.24 g, 11 mmol), Thiophenol (1.1 g, 10 mmol), BaMoO₄ 1 mol% (29 mg) and 5 mL CH₃CN. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an oil bath maintained at 80°C. The three necked flask is equipped with condenser in One neck, N₂ ballon in second neck and third neck was stopped with Teflon cork as showed in Figure. After the reaction is over. The solution is cooled and subjected to rotor. It was worked up with 25 ml of ethyl acetate and 20 ml of water. The layers are separated. Organic layer is collected and concentrated. The Cross-coupled *C-S* product was isolated by flash chromatography (1:40 EtOAc:hexanes) as pale yellow solid (1.56 g, 84%). Physical State: Colorless liquid. ; Mp: 53 °C

¹H NMR (400 MHz, CDCl₃) δ 7.28-7.25(m, 4H), 7.24-7.20 (m, 4H,) 7.18-7.14 (m, 2H),

¹³C NMR (100 MHz, CDCl₃) δ 135.3, 131.0, 129.2, 127.0.

General Procedure C-S Cross Couplings:

A oven dried 25 mL of 3-necked round bottom flask was charged with a stir bar, flame dried under vacuum and back filled with nitrogen three times. The flask was then charged with KOH (23.5 mg, 1.4 eq.), Haloarenes (0.33 mmol), Aryl/alkyl thiols (0.3 mmol), 3 mol% BaMoO₄ (3 mg) and 1 mL CH₃CN. The reaction mixture was evacuated and purged with inert gas (N₂) three times. The reaction mixture was then placed into an oil bath maintained at 75-80°C as reported in the scheme. The three necked flask is equipped with condenser in One neck, N₂ ballon in second neck and third neck was stopped with Teflon cork as showed in Figure 6. The reaction mixture was cooled and concentrated in rotor. Then 5 ml of CH₂Cl₂ is added and catalyst was filtered with whatmann filter paper-40. The filtrate was washed with water, concentrated in rotor and subjected for flash column chromatography using with 230-400 Silica Gel using ethylacetate and hexane as eluent to afford corresponding product. All yields are reported after column chromatography. The products were identified and cited with reorted literature

CHARACTERIZATIONS OF PRODUCTS

RECATIVITY OF THIOLS WITH HALOARENES

(Phenyl)(phenylsulfane (3a)¹

The flask was charged with Thiophenol (33 mg, 0.3 mmol), KOH (23 mg, 1.4 eq.), lodobenzene (67 mg, 0.33 mmol), 3 mol% BaMoO₄ (3 mg) and 1 mL CH₃CN. After the time specified in the reaction schemes, the reaction mixture was cooled and concentrated in rotor. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as colorless oil (51 mg, 92%).

Physical State: Liquid

¹H NMR (400 MHz, CDCl₃) δ 7.28-7.25(m, 4H), 7.24-7.20 (m, 4H,) 7.18-7.14 (m, 2H),

¹³C NMR (100 MHz, CDCl₃) δ 135.3, 131.0, 129.2, 127.0.

Phenyl(p-tolyl)sulfane (3b)¹

The flask was charged with 4-methyl thiophenol (37 mg, 0.3 mmol), KOH (23 mg, 1.4 eq.), Iodobenzene (67 mg, 0.33 mmol), 3 mol% BaMoO₄ (3 mg) and 1 mL CH₃CN. After the time specified in the reaction schemes, the reaction mixture was cooled and concentrated in rotor. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as colorless oil (54 mg, 90%).

Physical State: Liquid

¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, *J* = 8.0, Hz, 2H), 7.19-7.17 (m, 4H), 7.13-7.10 (m, 1H), 7.07 (d, *J* = 8.0, Hz, 2H), 2.27(S, 3H). ¹³H NMR (400 MHz, CDCl₃) δ 137.6, 137.1, 132.3, 130.1, 129.7, 129.1, 126.4, 21.2.

MeC

(4-methoxyphenyl)(phenyl)sulfane (3c)¹

The flask was charged with 4-methoxy thiophenol (42 mg, 0.3 mmol), KOH (23 mg, 1.4 eq.), lodobenzene (67 mg, 0.33 mmol), 3 mol% BaMoO₄ (3 mg) and 1 mL CH₃CN. After the time specified in the reaction schemes, the reaction mixture was cooled and concentrated in rotor. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as colorless oil (54 mg, 84%).

Physical State: Liquid

¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.49 (m, 2H), 7.31 – 7.25 (m, 5H), 6.97 (d, *J* = 8 Hz, 2H), 3.87 (s, 3H)

¹³C NMR (100 MHz, CDCl₃) δ 159.7, 138.5, 135.3, 128.8, 128.1, 125.6, 124.2, 114.9, 55.2

(Phenyl)(4-bromo phenyl)sulfane (3d)¹

The flask was charged with 4-bromothiophenol (56 mg, 0.3 mmol), KOH (23 mg, 1.4 eq.), lodobenzene (67 mg, 0.33 mmol), 3 mol% BaMoO₄ (3 mg) and 1 mL CH₃CN. After the time specified in the reaction schemes, the reaction mixture was cooled and concentrated in rotor. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as colorless oil (65 mg, 82%).

Physical State: Liquid

¹**H NMR (400 MHz, CDCl₃)** δ 7.34(d, J = 8.0 Hz, 2H), 7.27 (t, J = 8.0 Hz, 2H), 7.25-7.18 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 137.4, 135.7, 132.2, 132.0, 131.5, 130.2, 129.3, 127.5, 127.4, 121.5.

(Phenyl)(2-chloro phenyl)sulfane (3e)⁸

The flask was charged with 2-chlorothiophenol (43 mg, 0.3 mmol), KOH (23 mg, 1.4 eq.), lodobenzene (67 mg, 0.33 mmol), 3 mol% BaMoO₄ (3 mg) and 1 mL CH₃CN. After the time specified in the reaction schemes, the reaction mixture was cooled and concentrated in rotor. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as pale yellow oil (53 mg, 81%).

Physical State: Liquid

¹H NMR (400 MHz, CDCl₃) δ 7.46-7.43(m, 2H), 7.41-7.36 (m, 4H,) 7.13-7.10 (m, 2H), 6.98-6.96 (m, 1H),

¹³C NMR (100 MHz, CDCl₃) δ 135.2, 133.6, 132.0, 131.3, 129.3, 129.3, 128.3, 127.4.

(Phenyl)(2-bromo phenyl)sulfane (3f)⁹

The flask was charged with 2-bromothiophenol (56 mg, 0.3 mmol), KOH (23 mg, 1.4 eq.), lodobenzene (67 mg, 0.33 mmol), 3 mol% BaMoO₄ (3 mg) and 1 mL CH₃CN. After the time specified in the reaction schemes, the reaction mixture was cooled and concentrated in rotor. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as pale yellow oil (63 mg, 80%).

Physical State: Liquid; CAS: 15861-48-0

¹**H NMR (400 MHz, CDCl₃)** δ 7.45 (d, *J* = 8.0 Hz, 1H), 7.36-7.33(m, 2H), 7.28-7.24 (m, 3H), 7.02 (t, *J* = 8.0 Hz, 1H), 6.92 (t, *J* = 8.0 Hz, 1H), 6.382 (d, *J* = 8.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 138.3, 133.4, 132.9, 132.7, 129.6, 129.6, 128.4, 127.7, 127.2, 122.9.

(Phenyl)(cyclopentyl)sulfane (3g)¹⁰

The flask was charged with cyclopentane thiol (31 mg, 0.3 mmol), KOH (23 mg, 1.4 eq.), lodobenzene (67 mg, 0.33 mmol), 3 mol% BaMoO₄ (3 mg) and 1 mL CH₃CN. After the time specified in the reaction schemes, the reaction mixture was cooled and concentrated in rotor. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as color less (47 mg, 89%).

Physical State: Liquid; CAS No. 19744-72-0

¹H NMR (400 MHz, CDCl₃) δ 7.29-7.26(m, 2H), 7.19 (t, *J* = 8.0 Hz, 2H,) 7.09 (t, *J* = 8.0 Hz, 1H), 3.55-3.48 (m, 1H), 2.0-1.94 (m, 2H), 1.71-1.66 (m,2H), 1.58-1.50 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 137.2, 129.8, 128.7, 125.8, 45.8, 33.5, 33.07, 24.7.

(Phenyl)(cyclohexyl)sulfane (3h)³

The flask was charged with cyclohexane thiol (35 mg, 0.3 mmol), KOH (23 mg, 1.4 eq.), lodobenzene (67 mg, 0.33 mmol), 3 mol% BaMoO₄ (3 mg) and 1 mL CH₃CN. After the time specified in the reaction schemes, the reaction mixture was cooled and concentrated in rotor. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as colorless oil(49 mg, 85%).

Physical State: Liquid

¹**H NMR (400 MHz, CDCl**₃) δ 7.32(d, *J* = 8.0 Hz, 2H), 7.19 (t, *J* = 8.0 Hz, 2H,) 7.12 (t, *J* = 8.0 Hz, 1H,) 3.06-3.03 (m, 1H), 1.91-1.89 (m, 2H), 1.70-1.68 (m, 2H), 1.54-1.52 (m, 1H), 1.30-1.19 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 137.4, 135.1, 131.8, 128.7, 126.5, 46.5, 33.3, 26.0, 25.7.

3-(phenylthio)pyridine (3h1)

The flask was charged with 3-mercaptopyridine (111 mg, 1 mmol), Cs_2CO_3 (389 mg, 1.2 eq.), iodobenzene (223 mg, 1.1 mmol), 2.6 mol% CuMoO₄ (6 mg) and 1 mL DMSO. After the time specified in the reaction schemes, the reaction mixture

was cooled and worked up with ethylacetate and water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as colorless oil (153 mg, 82%). Physical State: Yellow Liquid

¹H NMR (400 MHz, CDCl₃) δ 8.58-8.47 (m, 2H), 7.57 (d, J = 8z, 1H), 7.38 – 7.28 (m, 5H), 7.20 (t, J = 8z, 1H), ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 147.6, 144.0, 137.6, 133.7, 131.6, 129.0, 128.9, 127.7, 127.4, 127.0.

3-(p-tolylthio)pyridine (3h2)⁶

The flask was charged with 3-mercaptopyridine (111 mg, 1 mmol), Cs_2CO_3 (389 mg, 1.2 eq.), 4-methyl iodobenzene (238 mg, 1.1 mmol), 2.6 mol% CuMoO₄ (6 mg) and 1 mL DMSO. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with ethylacetate and water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as colorless oil (160 mg, 80%).

Physical State: Yellow Liquid

¹H NMR (400 MHz, CDCl₃) δ 8.55-8.44 (m, 2H); 7.97 (d, J = 8 Hz, 1H), 7.30-7.26 (m, 2H), 7.15 –7.13 (m, 3H); 2.33 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 149.8, 146.7, 144.1, 138.3, 136.6, 132.7, 130.2, 129.7, 129.4, 128.4. 20.89.

B. Liu, C.-H. Lim and G. M. Miyake. J. Am. Chem. Soc. 2017, 139, 13616.

3-(Phenylthio)-1H-1,2,4-triazole

The flask was charged with 1H-1,2,4-triazole-5-thiol (101 mg, 1 mmol), Cs_2CO_3 (389 mg, 1.2 eq.), iodobenzene (223 mg, 1.1 mmol), 2.6 mol% CuMoO₄ (6 mg) and 1 mL DMSO. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with ethylacetate and water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as colorless oil (143 mg, 81%).

Physical State: Yellow Oil

¹H NMR (400 MHz, less Soluble in CDCl₃) δ 8.34 (s, 1H), 8.14 (d, J=8.0 Hz, 2H), 7.53 (d, J=8.0 Hz, 2H),

Tetrahedron 72 (2016) 6646e6653, B.Y.-H. Tan, Y.-C. Teo / Tetrahedron 72 (2016) 6646e6653

REACTIVITY OF THIOLS WITH 4-ACETYLHALOARENES

1-(4-(Phenylthio)phenyl)ethan-1-one (3i)¹¹

The flask was charged with thiophenol (33 mg, 0.3 mmol), KOH (23 mg, 1.4 eq.), 4-acetyl bromobenzene (65 mg, 0.33 mmol), 3 mol% BaMoO₄ (3 mg) and 1 mL CH₃CN. After the time specified in the reaction schemes, the reaction mixture was cooled and concentrated in rotor. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as white solid (64 mg, 95%).

Physical State: white solid; Mp: 64°C

¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.0 Hz, 2H), 7.51-7.49 (m, 2H), 7.41-7.39 (m, 3H), 7.22 (d, *J* = 8.0 Hz, 2H), 2.55 (s, 3H) ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 144.9, 134.4, 133.9, 132.9, 129.7, 128.9, 128.8, 127.5, 26.5.

1-(4-(p-Tolylthio)phenyl)ethan-1-one (3j)¹¹

The flask was charged with 4-methyl thiophenol (37 mg, 0.3 mmol), KOH (23 mg, 1.4 eq.), 4-acetyl bromobenzene (65 mg, 0.33 mmol), 3 mol% BaMoO₄ (3 mg) and 1 mL CH₃CN. After the time specified in the reaction schemes, the reaction mixture was cooled and concentrated in rotor. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as white solid (63 mg, 88%).

Physical State: white solid; Mp: 97°C

¹H NMR (400 MHz, CDCl₃) δ7.81 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 2.54 (s, 3H), 2.40 (s, 3H)

¹³C NMR (100 MHz, CDCl₃) δ 197.1, 145.9, 140.4, 134.8, 134.5, 130.5, 128.8, 127.2, 126.6, 26.5, 21.3.

1-(4-((4-bromophenyl)thio)phenyl)ethanone (3k)¹¹

The flask was charged with 4-bromo thiophenol (56 mg, 0.3 mmol), KOH (23 mg, 1.4 eq.), 4-acetyl bromobenzene (65 mg, 0.33 mmol), 3 mol% BaMoO₄ (3 mg) and 1 mL CH₃CN. After the time specified in the reaction schemes, the reaction mixture was cooled and concentrated in rotor. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as white solid (81 mg, 88%).

Physical State: white solid; MP: 181 °C

¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J*=8.0 Hz, 2H), 7.52 (d, *J*=8.0 Hz, 2H), 7.34 (d, *J*=8.0 Hz, 2H), 7.23 (d, *J*=8.0 Hz, 2H), 2.55 (s, 3H)

¹³C NMR (100 MHz, CDCl₃) δ 197.1, 143.8, 134.9, 132.9, 132.1, 131.9, 129.9, 128.9, 127.9, 126.5, 26.46.

1-(4-(benzylthio)phenyl)ethanone (3I)¹²

The flask was charged with Benzyl mercaptan (37 mg, 0.3 mmol), KOH (23 mg, 1.4 eq.), 4-acetyl bromobenzene (65 mg, 0.33 mmol), 3 mol% BaMoO₄ (3 mg) and 1 mL CH₃CN. After the time specified in the reaction schemes, the reaction mixture was cooled and concentrated in rotor. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as pale white needles (63 mg, 87%).

Physical State: white needles; MP: 112°C

Rf = 0.5 (silica gel, 1:4 EtOAc:hexanes)

¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J*=8.0 Hz, 2H), 7.36-7.30 (m, 7H), 4.22 (s, 2H), 2.56 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 197.2, 144.2, 136.3, 134.2, 128.7, 128.7, 127.5, 126.9, 37.2, 24.4.

Ô

1-(4-(cyclohexylthio)phenyl)ethanone (3m)¹³

The flask was charged with cyclohexane thiol (35 mg, 0.3 mmol), KOH (23 mg, 1.4 eq.), 4-acetyl bromobenzene (65 mg, 0.33 mmol), 3 mol% BaMoO₄ (3 mg) and 1 mL CH₃CN. After the time specified in the reaction schemes, the reaction mixture was cooled and concentrated in rotor. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as White Solid (59 mg, 85%).

Physical State: White Solid; Mp: 67 °C

¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J*=8.0 Hz, 2H), 7.38 (d, *J*=8.0 Hz, 2H), 3.36-3.32 (m, 1H), 2.59 (s, 3H), 2.07-2.06 (m, 2H), 1.84-1.81(m, 2H), 1.64-1.47 (m, 2H), 1.44-1.35 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 197.4, 143.6, 134.3, 128.7, 128.3, 44.9, 33.1, 29.7, 26.4, 25.9, 25.6.

1-(4-((4-Hydroxyphenyl)thio)phenyl)ethan-1-one (3n)¹¹

The flask was charged with 4-hydroxy thiophenol (38 mg, 0.3 mmol), KOH (23 mg, 1.4 eq.), 4-acetyl bromobenzene (65 mg, 0.33 mmol), 3 mol% $BaMoO_4$ (3 mg) and 1 mL CH₃CN. After the time specified in the reaction schemes, the reaction mixture was cooled and concentrated in rotor. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as white solid (63 mg, 86%).

Physical State: white solid; Mp: 190 °C

¹**H NMR (400 MHz, CDCl₃)** δ 7.80 (d, *J* = 8.0 Hz, 2H), 7.44(d, *J* = 8.0, Hz, 2H), 7.11 (d, *J* = 8.0, Hz, 2H), 6.91 (d, *J* = 8.0 Hz, 2H), 5.18 (s, 1H), 2.50 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 197.5, 159.4, 146.7, 137.1, 128.8, 125.9, 116.9, 26.4

1-(4-((4-Aminophenyl)thio)phenyl)ethan-1-one (30)¹¹

The flask was charged with 4-amino thiophenol (37 mg, 0.3 mmol), KOH (23 mg, 1.4 eq.), 4-acetyl bromobenzene (65 mg, 0.33 mmol), 3 mol% BaMoO₄ (3 mg) and 1 mL CH₃CN. After the time specified in the reaction schemes, the reaction mixture was cooled and concentrated in rotor. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as white solid (61 mg, 84%).

Physical State: White solid; Mp: 145 °C

¹**H NMR (400 MHz, CDCl₃)** δ 7.78 (dt, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 6.73 (d, *J* = 8.0 Hz, 2H), 3.91 (s, 2H), 2.53 (s, 3H)

¹H NMR (400 MHz, CDCl₃) δ 197.2, 147.8, 137.1, 133.6, 128.7, 125.3, 117.8, 116.1, 26.4.

REACTIVITY OF THIOLS WITH 4-NITROHALOARENES

(4-nitrophenyl)(phenyl)sulfane (3p)¹

The flask was charged with Thiophenol (33 mg, 0.3 mmol), KOH (23 mg, 1.4 eq.), 4-nitroiodobenzene (82 mg, 0.33 mmol), 3 mol% BaMoO₄ (3 mg) and 1 mL CH₃CN. After the time specified in the reaction schemes, the reaction mixture was cooled and concentrated in rotor. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as pale yellow Solid (66 mg, 95%).

Physical State: Yellow Solid; Mp: 53 °C

¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.0, Hz, 2H), 7.56 (dd, J = 8.0, Hz, 2H,) 7.47 – 7.45(m, 3H), 7.19 (d, J = 8.0, Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.5, 145.3, 134.8, 130.4, 129.7, 126.7, 124.0.

(4-Nitrophenyl)(4-methyl phenyl)sulfane (3q)²

The flask was charged with 4-methyl-thiophenol (37 mg, 0.3 mmol), KOH (23 mg, 1.4 eq.), 4-nitroiodobenzene (82 mg, 0.33 mmol), 3 mol% $BaMoO_4$ (3 mg) and 1 mL CH_3CN . After the time specified in the reaction schemes, the reaction mixture was cooled and concentrated in rotor. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as pale yellow solid (64 mg, 88%).

Physical State: White Solid; Mp: 86 °C

¹H NMR (400 MHz, CDCl₃) δ7.98 (d, J = 8.0, Hz, 2H), 7.37 (d, J = 8.0, Hz, 2H,) 7.21 (8, J = 8.0, Hz, 2H), 7.05 (d, J = 8.0, Hz, 2H), 2.34(S, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 149.3, 145.1, 140.2, 135.1, 130.8, 126.5, 126.1, 123.9, 21.3

(4-nitrophenyl)(4-methoxy phenyl)sulfane (3r)³

The flask was charged with 4-methoxy-thiophenol (42 mg, 0.3 mmol), KOH (23 mg, 1.4 eq.), 4-nitroiodobenzene (82 mg, 0.33 mmol), 3 mol% BaMoO₄ (3 mg) and 1 mL CH₃CN. After the time specified in the reaction schemes, the reaction mixture was cooled and concentrated in rotor. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as pale yellow oil (66 mg, 85%).

Physical State: Liquid.

¹H NMR (400 MHz, CDCl₃) δ 8.05(d, J = 8.0, Hz, 2H), 7.5 (d, J = 8.0, Hz, 2H,) 7.1 (d, J = 8.0, Hz, 2H), 7.0 (d, J = 8.0, Hz, 2H), 3.87(S, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.1, 150.1, 144.9, 137.1, 132.0, 125.5, 123.9, 120.1, 115.6, 55.4.

(4-nitrophenyl)(cyclohexyl)sulfane (3s)⁷

The flask was charged with Cyclohexane thiol (35 mg, 0.3 mmol), KOH (23 mg, 1.4 eq.), 4-nitroiodobenzene (82 mg, 0.33 mmol), 3 mol% BaMoO₄ (3 mg) and 1 mL CH₃CN. After the time specified in the reaction schemes, the reaction mixture was cooled and concentrated in rotor. The product was isolated by flash chromatography (1:40 EtOAc:hexanes) as pale yellow solid (66 mg, 93%).

Physical State: Yellow Solid; Mp: 53 °C

¹**H NMR (400 MHz, CDCl₃)** δ 8.12(d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 3.38-3.32 (m, 1H), 2.07-2.04 (m, 2H), 1.84-1.80(m, 2H), 1.69-1.66 (m, 1H), 1.48-1.30 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 146.9, 145.2, 127.7, 123.9, 44.9, 32.9, 29.7, 25.8, 25.6

Literature Reference for Compound Characterization:

(Phenyl)(phenylsulfane (3a) ¹	1	(Phenyl)(2-chloro phenyl)sulfane (3e) ⁸	8
Phenyl(p-tolyl)sulfane (b) ¹	1	(Phenyl)(2-bromo phenyl)sulfane (3f) ⁹	9
(4-methoxyphenyl)(phenyl)sulfane (3c) ¹	1	(Phenyl)(cyclopentyl)sulfane (3g) ¹⁰	10
(Phenyl)(4-bromo phenyl)sulfane (3d) ¹	1	(Phenyl)(cyclohexyl)sulfane (3h) ³	3
1-(4-(Phenylthio)phenyl)ethan-1-one (3i) ¹¹	11	1-(4-(cyclohexylthio)phenyl)ethanone (3m) ¹³	13
1-(4-(p-Tolylthio)phenyl)ethan-1-one (3j) ¹¹	11	1-(4-((4-Hydroxyphenyl)thio)phenyl)ethan-1-one (3n) ¹¹	11
1-(4-((4-bromophenyl)thio)phenyl)ethanone (3k) ¹¹	11	1-(4-((4-Aminophenyl)thio)phenyl)ethan-1-one (30) ¹¹	11
1-(4-(benzylthio)phenyl)ethanone (31) ¹²	12		
(4-nitrophenyl)(phenyl)sulfane (3p) ¹	1	(4-nitrophenyl)(4-methoxyphenyl)sulfane (3r) ³	3
$(4-nitrophenyl)(4-methyl phenyl)sulfane (3q)^2$	2	(4-nitrophenyl)(cyclohexyl)sulfane (3s) ⁷	7

1) Rout, L., Sen, T. K., Punniyamurthy, T. Angew. Chem. Int. Ed. Eng. 2007, 46, 5583.

- 2) Gogoi, P., Hazarika, S., Barman, P., Scientific Reports, 2015, 5, 13873
- 3) Sindhu, K.S., Abi, T.G., Mathai, G., Anilkumarm, G., Polyhydron, 2019, 158, 270
- 4) Zhang, X., Lu, G. -P., Cai, C. Green Chem., 2016, 18, 5580.
- 5) Ndungu, J. M. Sun, A., et al J. Med. Chemi. **2012**, 55, 4230.
- 6) Gholinejad, M., Karimi, B., Mansouri, F., J. Mol. Cat. A: 2014, 386, 20.
- 7) Li, Y., Zhu, F., Wang, Z., & Wu, X.-F. Chem. An Asian J., 2016, 11, 3503.
- 8) Shieh, Y.-C., Du, K., Basha, R. S., Xue, Y.-J., Shih, B.-H., Li, L., Lee, C.-F., J. Org. Chem. 2019, 84, 6223.
- 9) Rout, L.; Saha, P.; Punniyamurthy, T.; Eur. J. Org. Chem. 2008, 4, 640
- 10) Weinstock, J., Bernardi, J. L., Pearson, R, G., J. Am. Chem. Soc. 1958, 80, 4961.
- 11) Liu, B.; Lim C.-H., Miyakae, G. M. J. Am. Chem. Soc. 2017, 139, 13616.
- 12) Hathaway, B. A., Triefenbach, M. M., Molecules, 2001, 6, M244.
- 13) Fangjie, G., Yuxuan, H., Jingyun, H., Jing, S., Mingdong, Z., Chin. J. Org. Chem, 2017, 37, 15

¹H and ¹³C NMR Spectra of Products

S-51

