Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplemental Information (ESI) for New Journal of Chemistry

## A High-Capacity Iron Silicide Air Primary Battery

in an Acidic Saline Electrolyte

Junjie Wang<sup>a</sup>, Lifeng Cui<sup>a,\*</sup>, Shasha Li<sup>b</sup>, Tingting Pu<sup>a</sup>, Xueyou Fang<sup>c</sup>, Shifei Kang<sup>a</sup>,

Xiaodong Zhang<sup>a,\*</sup>

<sup>a</sup> School of Environment and Architecture, University of Shanghai for Science and

Technology, Shanghai 200093, China

<sup>b</sup> School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

<sup>c</sup> School of Environmental Science and Engineering, Yancheng Institution of Technology, Yancheng, JiangSu 224051, China

\*Corresponding authors E-mail addresses: fatzhxd@126.com (X. Zhang); lifeng.cui@gmail.com (L. Cui).

## 1. Material characterization

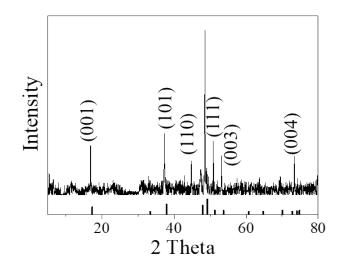



Fig. S1 XRD patterns of pretreated FeSi2 powder.

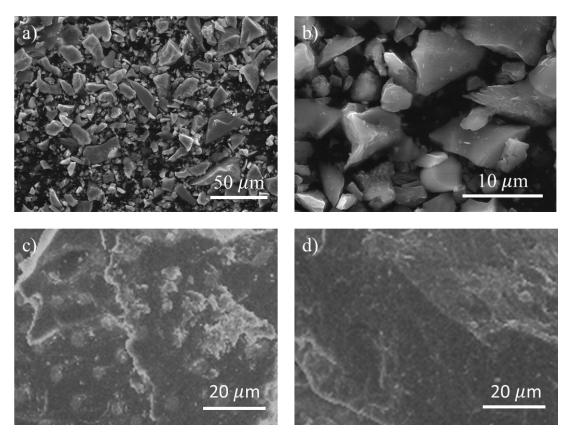



Fig. S2 SEM images of a) and b)  $FeSi_2$  at different magnitude, c)  $FeSi_2$  was immersed in 2 M H<sub>2</sub>SO<sub>4</sub> for 48 hrs and d)  $FeSi_2$  was immersed in 2 M H<sub>2</sub>SO<sub>4</sub> which contained F<sup>-</sup> ions for 48 hrs.

#### 2. Corrosion rate

A corrosion-time plots obtained by ICP-AES technique of the solutions for iron corrosion can be found in research by M.A. Amin *et.al.* [1]

Find the mass of Fe dissolved and time

Mass of Fe dissolved =  $\sim 4.8 \text{ mg cm}^{-2}$ 

Time =  $\sim 11.5$  hours

Corrosion rate =  $\frac{4.8}{11.5}$  = ~0.42 mg cm<sup>-2</sup> hr<sup>-1</sup>

The corrosion rate of Fe in 1 M H<sup>+</sup> was 28 times that of  $FeSi_2$  in ASF-2 and 89 times that of  $FeSi_2$  in ASF-0.5.

Another corrosion experiment was carried out in the research by S.M. Lee et.al. [2]

The size of Zn gel anode used in the reference was 2.5  $\times$  2 cm<sup>2</sup>

Compare the  $H_2$  evolution at 5 hrs for both Zn gel anode and  $FeSi_2$  anode.

Area: 2.5  $\times$  2 = 5 cm<sup>2</sup>

Mass of Fe = 0.365 mg (in ASF-2)

Amount of Fe = 0.00652 mmol

Amount of  $H_2 = 0.00652 \text{ mmol}$ 

Volume of  $H_2 = 0.00652 \times 22.4 = 0.146 \text{ mL}$  (at STP)

The result indicates that the H<sub>2</sub> evolution from Zn gel anode (in 9 M KOH at 60  $^{\circ}$ C) and FeSi<sub>2</sub> anode (in ASF-2 at 25  $^{\circ}$ C) were ~0.56 mL and ~0.15 mL, respectively when both of them were immersed in electrolyte for 5 hours. Though temperature of electrolyte has significant effect on corrosion rate, we can conclude that they have similar corrosion rate (or similar magnitude).

## 3. Calculation of theoretical cell potential [3]

Anode: FeSi<sub>2</sub> + 4H<sub>2</sub>O 
$$\Rightarrow$$
 Fe<sup>2+</sup> + 2SiO<sub>2</sub> + 8H<sup>+</sup>+10e<sup>-</sup>  
 $\Delta G_{f}^{\theta}(\text{FeSi}_{2}, \text{s}) = -22.6 \text{ kcal mol}^{-1}$   
 $\Delta G_{f}^{\theta}(\text{H}_{2}\text{O}, 1) = -56.687 \text{ kcal mol}^{-1}$   
 $\Delta G_{f}^{\theta}(\text{H}_{2}\text{O}, 1) = -18.85 \text{ kcal mol}^{-1}$   
 $\Delta G_{f}^{\theta}(\text{Fe}^{2+}, \text{aq}) = -18.85 \text{ kcal mol}^{-1}$   
 $\Delta G_{f}^{\theta}(\text{SiO}_{2}, \text{s}) = -204.75 \text{ kcal mol}^{-1}$   
 $\Delta G_{f}^{\theta}(\text{H}^{+}, \text{aq}) = 0 \text{ kcal mol}^{-1}$   
 $\Delta G_{f}^{\theta}(\text{H}^{+}, \text{aq}) = 0 \text{ kcal mol}^{-1}$   
 $\Delta G_{f}^{\theta}(\text{Fe}^{2+}, \text{aq}) + \Delta G_{f}^{\theta}(\text{SiO}_{2}, \text{s}) + \Delta G_{f}^{\theta}(\text{H}^{+}, \text{aq})$   
 $= [(-18.85) + 2 \times (-204.75) + 0] - [(-22.6) + 4 \times (-56.687)]$   
 $= -179.00 \text{ kcal mol}^{-1} \times 4.186 \text{ kJ kcal}^{-1} = -749.3 \text{ kJ mol}^{-1}$   
 $\Delta G_{R}^{\theta} = -nfE^{0}$   
 $E^{\theta} = -\frac{\Delta G_{R}^{\theta}}{nf} = -\frac{-749.3 \times 1000}{10 \times 96500} = +0.776 \text{ V}$   
Cathode: O<sub>2</sub> + 4H<sup>+</sup> + 4e<sup>-</sup>  $\Rightarrow$  2H<sub>2</sub>O  $E^{\theta} = +1.229 \text{ V}$   
Overall equation: 2FeSi<sub>2</sub> + 5O<sub>2</sub> + 4H<sup>+</sup>  $\Rightarrow$  2Fe<sup>2+</sup> + 4SiO<sub>2</sub> + 2H<sub>2</sub>O  $E^{\theta} = 2.005 \text{ V}$ 

# 4. Calculation of theoretical and practical capacity

Calculation of theoretical capacity:

Faraday's constant =  $96500 \text{ C} \text{ mol}^{-1}$ 

 $1 \text{ Ah} = 1 \text{ A} \times 3600 \text{ s} = 3600 \text{ C}$ 

1 mol of electrons:  $\frac{96500}{3600} = 26.8$  Ah

So theoretical capacity,  $C_0 = 26.8 \times n \times \frac{m}{M}$ 

wherein, n is the amount of electron transition in the discharge process; m is the mass of active material in the anode, which is equal to 1 g in theoretical specific capacity calculation; M is the molar mass of active material.

| Anode<br>material | Theoretical  | Practical    | Density, g<br>cm <sup>-3</sup> [4] | Volumetric   |       |
|-------------------|--------------|--------------|------------------------------------|--------------|-------|
|                   | capacity, Ah | capacity, Ah |                                    | capacity, Ah | Ref.  |
|                   | $g^{-1}$     | $g^{-1}$     |                                    | $L^{-1}$     |       |
| Zn                | 0.82         | 0.645        | 7.134                              | 4666         | [5]   |
| Fe                | 0.96         | ~0.5         | 7.87                               | ~3935        | [6]   |
| FeB               | 2.41         | 1.2          | ~7                                 | ~8400        | [7]   |
| Si                | 3.82         | 1.206        | 2.3296                             | 2809         | [8]   |
| TiSi <sub>2</sub> | 3.07         | ~1.8         | 4.0                                | ~7200        | [9]   |
| FeSi <sub>2</sub> | 2.39         | 1.90         | 4.74                               | 9006         | This  |
|                   |              |              |                                    |              | paper |

**Table S1** Summary of theoretical and practical capacity of different anode materials

 and their volumetric capacity from different references and this paper.

For FeSi<sub>2</sub>:

 $\mathrm{FeSi}_2 + 4\mathrm{H}_2\mathrm{O} \xrightarrow{} \mathrm{Fe}^{2+} + 2\mathrm{SiO}_2 + 8\mathrm{H}^+ + 10\mathrm{e}^-$ 

 $M = 112.03 \text{ g mol}^{-1};$ 

$$n = 10$$

$$C_0 = 26.8 \times 10^{-1} \times \frac{1}{112.03} = 2.39 \text{ Ah g}^{-1}$$

Density of FeSi<sub>2</sub> is 4.74 g cm<sup>-3</sup> [4]

Volumetric specific capacity =  $2.39 \times 4.74 = 11.33$  Ah cm<sup>-3</sup> = 11330 Ah L<sup>-1</sup>

For FeB: [7]

 $\text{FeB} + 9\text{OH}^{-} \rightarrow 0.5\text{Fe}_2\text{O}_3 + \text{BO}_3^{3-} + 4.5\text{H}_2\text{O}$ 

$$M = 66.656 \text{ g mol}^{-1}$$

n = 6

$$C_0 = 26.8 \times 6 \times \frac{1}{66.656} = 2.41 \text{ Ah g}^{-1}$$

Density of FeB is  $\sim$ 7 g cm<sup>-3</sup> [4]

Volumetric specific capacity =  $2.41 \times 7 = 16.89$  Ah cm<sup>-3</sup> = 16890 Ah L<sup>-1</sup>

Reference: Exceptional electrochemical activities of amorphous Fe–B and Co–B alloy powders used as high capacity anode materials

Practical gravimetric specific capacity = 1200 mAh  $g^{-1}$  = 1.200 Ah  $g^{-1}$ 

Practical volumetric specific capacity = 1.200 Ah  $g^{-1} \times 7 \times 1000 = 8400$  Ah  $L^{-1}$ 

For Si:

 $Si + 4OH^{-} \rightarrow Si(OH)_4 + 4e^{-}$ 

 $M = 28.09 \text{ g mol}^{-1}$ 

n = 4

$$C_0 = 26.8 \times 4 \times \frac{1}{28.09} = 3.82 \text{ Ah g}^{-1}$$

Density of Si is 2.3296 g cm<sup>-3</sup> [4]

Volumetric specific capacity =  $3.82 \times 2.3296 = 8.89$  Ah cm<sup>-3</sup> = 8890 Ah L<sup>-1</sup>

Practical gravimetric specific capacity =  $1206 \text{ mAh } \text{g}^{-1} = 1.206 \text{ Ah } \text{g}^{-1}$  [8]

Practical volumetric specific capacity = 1.206 Ah g<sup>-1</sup> × 2.3296 × 1000= 2809 Ah

 $L^{-1}$ 

For TiSi<sub>2</sub>

 $\mathrm{TiSi}_2 + 12\mathrm{OH}^{-} \xrightarrow{} \mathrm{TiO}_2 + 2\mathrm{SiO}_2 + 6\mathrm{H}_2\mathrm{O} + 12\mathrm{e}^{-}$ 

$$M = 104.86 \text{ g mol}^{-1}$$
  
n = 12

$$C_0 = 26.8 \times 12^{-104.86} = 3.07 \text{ Ah g}^{-1}$$

Density of TiSi<sub>2</sub> is 4.0 g cm<sup>-3</sup> [4]

Volumetric specific capacity =  $3.07 \times 4.0 = 12.28$  Ah cm<sup>-3</sup> = 12800 Ah L<sup>-1</sup>

Practical gravimetric specific capacity =  $1800 \text{ mAh } \text{g}^{-1} = 1.800 \text{ Ah } \text{g}^{-1}$  [9]

Practical volumetric specific capacity = 1.800 Ah g<sup>-1</sup> × 4.0 × 1000 = 7200 Ah L<sup>-1</sup>

For Zn:

$$Zn \rightarrow Zn^{2+} + 2e^{-}$$
  
M = 65.38 g mol<sup>-1</sup>  
n = 2

$$C_0 = 26.8 \times 2 \times \frac{1}{65.38} = 0.82 \text{ Ah g}^{-1}$$

Density of Si is 7.134 g cm<sup>-3</sup> [4]

Volumetric specific capacity =  $0.82 \times 7.134 = 5.849$  Ah cm<sup>-3</sup> = 5849 Ah L<sup>-1</sup> [5] Reference:

For Fe:

 $Fe + 2OH^{-} \rightarrow Fe(OH)_2 + 2e^{-}$ 

 $M = 55.85 \text{ g mol}^{-1}$ 

n = 2

$$C_0 = 26.8 \times 2 \times \frac{1}{55.85} = 0.96 \text{ Ah g}^{-1}$$

Density of Fe is 7.87 g  $cm^{-3}$  [4]

Volumetric specific capacity =  $0.96 \times 7.87 = 7.56$  Ah cm<sup>-3</sup> = 7560 Ah L<sup>-1</sup>

Practical gravimetric specific capacity = 500 mAh  $g^{-1}$  = 0.500 Ah  $g^{-1}$ 

Practical volumetric specific capacity = 0.500 Ah g<sup>-1</sup>  $\times$  7.87  $\times$  1000= 3935 Ah L<sup>-1</sup>

### Reference

- M.A. Amin, K.F. Khaled, Q. Mohsen, H.A. Arida, Corros. Sci., 2010, 52, 1684-1695.
- S.M. Lee, Y.J. Kim, S.W. Eom, N.S. Choi, K.W. Kim, S.B. Cho, *J. Power Sources*, 2013, **227**, 177-184.
- 3 J.A. Dean, Lange's handbook of chemistry, 15 ed., McGraw-Hill, United States of America, 1999.
- 4 D.R. Lide, CRC handbook of chemistry and physics, CRC Press, 2010.

- 5 Energizer, Product datasheet. http://data.energizer.com/PDFs/675.pdf.
- B.T. Hang, H. Hayashi, S.H. Yoon, S. Okada, J. Yamaki, *J. Power Sources*, 2008, 178, 393-401.
- Y.D. Wang, X.P. Ai, Y.L. Cao, H.X. Yang, *Electrochem. Commun.*, 2004, 6, 780-784.
- X. Zhong, H. Zhang, Y. Liu, J. Bai, L. Liao, Y. Huang, X. Duan, *ChemSusChem*, 2012, 5, 177-180.
- 9 H. Zhang, X. Zhong, J.C. Shaw, L. Liu, Y. Huang, X. Duan, *Energ. Environ. Sci.*, 2013, 6, 2621-2625.