Supporting Information for New Journal of Chemistry

## MnO<sub>2</sub>-GO-Scroll-TiO<sub>2</sub>-ITQ2 as low-temperature NH<sub>3</sub>-SCR Catalyst with wide SO<sub>2</sub>-tolerance temperature range

Liwei Sun,<sup>ab</sup> Zeshu Zhang,<sup>ab</sup> Heyuan Tian,<sup>ab</sup> Peng Liu,<sup>ab</sup> Yibo Zhang<sup>\*a</sup> and Xiangguang Yang<sup>\*ab</sup> <sup>a</sup> State Key Laboratory of Rare Earth Resource Utilization, Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China.

<sup>b</sup> University of Science and Technology of China, Hefei 230026, China.

## **Additional Figures**



Fig. S1 NO-TPD, DRIFT and NH<sub>3</sub>-TPD results of MnO<sub>2</sub>-GOS.

Figure S1a is the NO-TPD result of the MnO<sub>2</sub>-GOS obtained by monitoring the ion peak (m/z) 30 with mass spectrometry. There are four kinds of NO: chemisorbed NO, NO produced by nitrite decomposition, NO produced by direct decomposition of nitrate and NO formed after nitrate oxidation of GO. The DRIFT result in Figure S1b validates the above results. Some strong bands were observed at 1350-1650, 1290 and 1023 cm<sup>-1</sup>. the bands at 1360 cm<sup>-1</sup> caused by and nitrite.<sup>1</sup> The bands at 1490 and 1290 cm<sup>-1</sup> were attributed to nitrate species.<sup>2</sup> The results showed that NO was easily oxidized to nitrite and nitrate species on the surface of the MnO<sub>2</sub>-GOS. Figure S1c is the NH<sub>3</sub>-TPD result of MnO<sub>2</sub>-GOS has a certain degree of acidity. The above results show that MnO<sub>2</sub>-GOS is still redox and acidic which could be used as a catalyst for NH<sub>3</sub>-SCR.



Fig. S2 The effect of the amount of TiO<sub>2</sub> deposition on the activity.

Changing the ratio of Mn to Ti does change oxidation capacity. However, one of the disadvantages of adjusting the oxidation activity by changing the ratio is that it will have a great impact on the low-temperature activity, as shown in the Figure S2. This is why we choose super-large specific surface area GO and ALD-Ti to reduce the amount of doping. From the point of view of the least impact on the activity, we use  $MnO_2(97.8 \%)$ -GOS(2 %)-TiO<sub>2</sub>(0.2 %) as NH<sub>3</sub>-SCR catalyst.



Fig. S3 Structural characterization: XRD pattern of ITQ2, MnO<sub>2</sub>, MnO<sub>2</sub>-GOS-TiO<sub>2</sub> and MnO<sub>2</sub>-GOS-TiO<sub>2</sub>-ITQ2.



Fig. S4 Morphology characterization: TEM image of ITQ2. Inset is the SEM image.



Fig. S5 Catalyst performance: activity of ITQ2.

ITQ2 almost have no de-NO catalytic activity in the range of reaction temperature.



Fig. S6 Catalyst performance: (a) NH<sub>3</sub> conversion and (b) N<sub>2</sub> selectivity of MnO<sub>2</sub>, MnO<sub>2</sub>-GOS-TiO<sub>2</sub> and MnO<sub>2</sub>-GOS-TiO<sub>2</sub>-ITQ2 in the presence of steam.



Fig. S7 DRIFT spectra of MnO<sub>2</sub>-GOS-TiO<sub>2</sub> treated by flowing (a) 1000 ppm NO + 2 vol % O<sub>2</sub> (b) 50 °C upon passing NO + O<sub>2</sub> over the 1000 ppm NH<sub>3</sub> (c) 50 °C upon passing NO + O<sub>2</sub> over the NH<sub>3</sub> + SO<sub>2</sub>.

Figure S7a showed the NO +  $O_2$  DRIFT spectra of MnO<sub>2</sub>-GOS-TiO<sub>2</sub>, while Figures S7b and S7c showed that the catalyst adsorbed NH<sub>3</sub> and NH<sub>3</sub> + SO<sub>2</sub> first and then passed through NO + O<sub>2</sub>. From the 2 min results of Figures S7b and S7c, we could see that the introduction of SO<sub>2</sub> does increase the adsorption of NH<sub>3</sub> on the surface and it takes a longer time for NO + O<sub>2</sub> to consume NH<sub>3</sub>. Therefore, the addition of SO<sub>2</sub> (H<sub>2</sub>SO<sub>3</sub>, Brönsted acid) was conducive to the adsorption of NH<sub>3</sub> on the catalyst was naturally increased.

Table S1 The S concentration of each catalyst measured by ICP after SO<sub>2</sub>-tolerance test

| Catalysts and conditions                                                           | S concentration (mg/g <sub>MnO2</sub> ) |
|------------------------------------------------------------------------------------|-----------------------------------------|
| $MnO_2$ at 150 $^\circ C$ for 3 h                                                  | 5.11                                    |
| MnO <sub>2</sub> -GOS-TiO <sub>2</sub> at 150 $^\circ C$ for 30 h                  | 0.36                                    |
| MnO <sub>2</sub> -GOS-TiO <sub>2</sub> at 200 $^\circ\!\!\mathbb{C}$ for 6 h       | 4.10                                    |
| MnO <sub>2</sub> -GOS-TiO <sub>2</sub> -ITQ2 at 200 $^\circ\!\!\mathrm{C}$ for 6 h | 3.97                                    |

| Catalyst                                                                  | Space<br>Velocity (mL<br>g <sup>-1</sup> h <sup>-1</sup> ) | SO <sub>2</sub><br>Concentration<br>(ppm) | Temperature<br>(°C) | SO <sub>2</sub> -<br>Tolerant<br>Time <sup>a</sup> (h) | NO<br>Conversion<br>(%) | Reference |
|---------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------|---------------------|--------------------------------------------------------|-------------------------|-----------|
| MnO2-CeO2-OMS2                                                            | 64,000                                                     | 150                                       | 150                 | 1.8                                                    | 55                      | 3         |
| Fe <sub>2</sub> O <sub>3</sub> -SBA150                                    | 15,000                                                     | 800                                       | 250                 | 16                                                     | 50                      | 4         |
| La <sub>x</sub> Sr <sub>1-x</sub> MnO <sub>3</sub>                        | 120,000                                                    | 100                                       | 250                 | 0.5                                                    | 55                      | 5         |
| MnO2-TiO2-CeO2-<br>V2O5                                                   | 70,000                                                     | 100                                       | 200                 | 13                                                     | 80                      | 6         |
| MnO <sub>2</sub> -TiO <sub>2</sub>                                        | 150,000                                                    | 100                                       | 200                 | 5                                                      | 83                      | 7         |
| MnO <sub>2</sub> -TiO <sub>2</sub>                                        | 150,000                                                    | 100                                       | 150                 | 5                                                      | 64                      | 7         |
| MnO2-CuO-TiO2                                                             | 20,000                                                     | 200                                       | 150                 | 6                                                      | 75                      | 8         |
| CuO-Fe <sub>2</sub> O <sub>3</sub> -WO <sub>3</sub> -<br>TiO <sub>2</sub> | 40,000                                                     | 100                                       | 220                 | 13                                                     | 93                      | 9         |
| MnO <sub>2</sub> -MoO <sub>3</sub> -Al <sub>2</sub> O <sub>3</sub>        | 35,000                                                     | 100                                       | 150                 | 2                                                      | 81                      | 10        |
| MnO <sub>2</sub> -CuO-TiO <sub>2</sub>                                    | 8,0000                                                     | 100                                       | 200                 | 6                                                      | 65                      | 11        |
| CeO <sub>2</sub> -SnO <sub>2</sub> -TiO <sub>2</sub>                      | 30,000                                                     | 300                                       | 240                 | 8                                                      | 55                      | 12        |
| CeO <sub>2</sub> -Sm <sub>2</sub> O <sub>3</sub> -TiO <sub>2</sub>        | 90,000                                                     | 200                                       | 250                 | 29                                                     | 80                      | 13        |
| CuO-Sb <sub>2</sub> O <sub>3</sub> -TiO <sub>2</sub>                      | 60,000                                                     | 500                                       | 250                 | 9                                                      | 86                      | 14        |
| MnO <sub>2</sub> -Co <sub>3</sub> O <sub>4</sub>                          | 80,000                                                     | 50                                        | 180                 | 10                                                     | 60                      | 15        |
| MnO <sub>2</sub> -GOS-TiO <sub>2</sub>                                    | 40,000                                                     | 100                                       | 150                 | >100                                                   | 90                      | This work |
| MnO2-GOS-TiO2-<br>ITQ2                                                    | 20,000                                                     | 100                                       | 200                 | >100                                                   | 90                      | This work |

Table S2 Comparison of SO2-tolerant performance

<sup>a</sup> SO<sub>2</sub>-tolerance time is only the test time, not the longest time to resist SO<sub>2</sub> poisoning.

## References

1. Larrubia, M. A.; Ramis, G.; Busca, G., An FT-IR Study of the Adsorption and Oxidation of N-Containing Compounds over Fe<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> SCR catalysts. Appl Catal B-Environ **2001**, 30, 101-110.

2. Trovarelli, A., Catalytic Properties of Ceria and CeO<sub>2</sub>-Containing Materials. Catal Rev Sci Eng **2006**, 38, 439-520.

3. Wu, X. M.; Yu, X. L.; He, X. Y.; Jing, G. H., Insight into Low-Temperature Catalytic NO Reduction with NH3 on Ce-Doped Manganese Oxide Octahedral Molecular Sieves. J Phys Chem C **2019**, 123, 10981-10990.

4. Guo, K., et al., Pore Size Expansion Accelerates Ammonium Bisulfate Decomposition for Improved Sulfur Resistance in Low-Temperature NH3-SCR. ACS Appl Mater Inter **2019**, 11, 4900-4907.

5. Wang, D.; Peng, Y.; Yang, Q. L.; Xiong, S. C.; Li, J. H.; Crittenden, J., Performance of Modified La<sub>x</sub>Sr<sub>1-x</sub>MnO<sub>3</sub> Perovskite Catalysts for NH<sub>3</sub> Oxidation: TPD, DIFT, and Kinetic Studies. Environ Sci Technol **2018**, 52, 7443-7449.

Vuong, T. H.; Bartling, S.; Bentrup, U.; Lund, H.; Rabeah, J.; Atia, H.; Armbruster, U.; Bruckner, A., Synergistic Effect of VO<sub>x</sub> and MnO<sub>x</sub> Surface Species for Improved Performance of V<sub>2</sub>O<sub>5</sub>/Ce<sub>0.5</sub>Ti<sub>0.5-x</sub>Mn<sub>x</sub>O<sub>2</sub>-Delta Catalysts in Low-Temperature NH<sub>3</sub>-SCR of NO. Catal Sci Technol **2018**, 8, 6360-6374.
Yang, Y. R.; Wang, M. H.; Tao, Z. L.; Liu, Q.; Fei, Z. Y.; Chen, X.; Zhang, Z. X.; Tang, J. H.; Cui, M. F.; Qiao, X., Mesoporous Mn-Ti Amorphous Oxides: A Robust Low-Temperature NH<sub>3</sub>-SCR Catalyst. Catal Sci Technol **2018**, 8, 6396-6406.

8. Fan, J. W.; Lv, M. H.; Luo, W.; Ran, X. Q.; Deng, Y. H.; Zhang, W. X.; Yang, J. P., Exposed Metal Oxide Active Sites on Mesoporous Titania Channels: A Promising Design for Low-Temperature Selective Catalytic Reduction of NO with NH<sub>3</sub>. Chem Commun **2018**, 54, 3783-3786.

9. Ma, S. B.; Zhao, X. Y.; Li, Y. S.; Zhang, T. R.; Yuan, F. L.; Niu, X. Y.; Zhu, Y. J., Effect of W on the Acidity and Redox Performance of the Cu<sub>0.02</sub>Fe<sub>0.2</sub>W<sub>a</sub>TiO<sub>x</sub> (a=0.01, 0.02, 0.03) Catalysts for NH<sub>3</sub>-SCR of NO. Appl Catal B-Environ **2019**, *248*, 226-238.

10. Yang, G.; Zhao, H. T.; Luo, X.; Shi, K. Q.; Zhao, H. B.; Wang, W. K.; Chen, Q. H.; Fan, H.; Wu, T., Promotion Effect and Mechanism of the Addition of Mo on the Enhanced Low Temperature SCR of NO<sub>x</sub> by NH<sub>3</sub> over MnO<sub>x</sub>/Gamma-Al<sub>2</sub>O<sub>3</sub> Catalysts. Appl Catal B-Environ **2019**, *245*, 743-752.

11. Yan, Q. H.; Chen, S. N.; Zhang, C.; Wang, Q.; Louis, B., Synthesis and Catalytic Performance of Cu<sub>1</sub>Mn<sub>0.5</sub>Ti<sub>0.5</sub>O<sub>x</sub> Mixed Oxide as Low-Temperature NH<sub>3</sub>-SCR Catalyst with Enhanced SO<sub>2</sub> Resistance. Appl Catal B-Environ **2018**, *238*, 236-247.

12. Zhang, G. D.; Han, W. L.; Zhao, H. J.; Zong, L. Y.; Tang, Z. C., Solvothermal Synthesis of Well-Designed Ceria-Tin-Titanium Catalysts with Enhanced Catalytic Performance for Wide Temperature NH<sub>3</sub>-SCR Reaction. Appl Catal B-Environ **2018**, *226*, 117-126.

13. Liu, H.; Fan, Z. X.; Sun, C. Z.; Yu, S. H.; Feng, S.; Chen, W.; Chen, D. Z.; Tang, C. J.; Gao, F.; Dong, L., Improved Activity and Significant SO<sub>2</sub> Tolerance of Samarium Modified CeO<sub>2</sub>-TiO<sub>2</sub> Catalyst for NO Selective Catalytic Reduction with NH<sub>3</sub>. Appl Catal B-Environ **2019**, *244*, 671-683.

14. Kim, J.; Kwon, D. W.; Lee, S.; Ha, H. P., Exploration of Surface Properties of Sb-Promoted Copper Vanadate Catalysts for Selective Catalytic Reduction of NO<sub>x</sub> by NH<sub>3</sub>. Appl Catal B-Environ **2018**, *236*, 314-325.

15. Meng, D. M.; Xu, Q.; Jiao, Y. L.; Guo, Y.; Guo, Y. L.; Wang, L.; Lu, G. Z.; Zhan, W. C., Spinel Structured Coamnbox Mixed Oxide Catalyst for the Selective Catalytic Reduction of NO<sub>x</sub> with NH<sub>3</sub>. Appl Catal B-Environ **2018**, *221*, 652-663.