
Supporting Information for New Journal of Chemistry 

 

MnO2-GO-Scroll-TiO2-ITQ2 as low-temperature NH3-SCR Catalyst with 

wide SO2-tolerance temperature range 

Liwei Sun,ab Zeshu Zhang,ab Heyuan Tian,ab Peng Liu,ab Yibo Zhang*a and Xiangguang Yang*ab 

a State Key Laboratory of Rare Earth Resource Utilization, Jilin Province Key Laboratory of Green 

Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 

Changchun 130022, China.  

b University of Science and Technology of China, Hefei 230026, China. 

Additional Figures 

 

Fig. S1 NO-TPD, DRIFT and NH3-TPD results of MnO2-GOS. 

Figure S1a is the NO-TPD result of the MnO2-GOS obtained by monitoring the ion peak (m/z) 30 

with mass spectrometry. There are four kinds of NO: chemisorbed NO, NO produced by nitrite 

decomposition, NO produced by direct decomposition of nitrate and NO formed after nitrate 

oxidation of GO. The DRIFT result in Figure S1b validates the above results. Some strong bands 

were observed at 1350-1650, 1290 and 1023 cm-1. the bands at 1360 cm-1 caused by and nitrite.1 

The bands at 1490 and 1290 cm-1 were attributed to nitrate species.2 The results showed that NO 

was easily oxidized to nitrite and nitrate species on the surface of the MnO2-GOS. Figure S1c is the 

NH3-TPD result of MnO2-GOS. Due to the existence of oxygen-containing functional groups on the 

surface of GO, MnO2-GOS has a certain degree of acidity. The above results show that MnO2-GOS 

is still redox and acidic which could be used as a catalyst for NH3-SCR. 

 

 

Fig. S2 The effect of the amount of TiO2 deposition on the activity. 

Changing the ratio of Mn to Ti does change oxidation capacity. However, one of the disadvantages 

of adjusting the oxidation activity by changing the ratio is that it will have a great impact on the low-

temperature activity, as shown in the Figure S2. This is why we choose super-large specific surface 

area GO and ALD-Ti to reduce the amount of doping. From the point of view of the least impact on 

the activity, we use MnO2(97.8 %)-GOS(2 %)-TiO2(0.2 %) as NH3-SCR catalyst. 
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Fig. S3 Structural characterization: XRD pattern of ITQ2, MnO2, MnO2-GOS-TiO2 and MnO2-GOS-

TiO2-ITQ2. 

 

 

Fig. S4 Morphology characterization: TEM image of ITQ2. Inset is the SEM image. 

 

 

Fig. S5 Catalyst performance: activity of ITQ2. 

ITQ2 almost have no de-NO catalytic activity in the range of reaction temperature. 

 

 

Fig. S6 Catalyst performance: (a) NH3 conversion and (b) N2 selectivity of MnO2, MnO2-GOS-TiO2 

and MnO2-GOS-TiO2-ITQ2 in the presence of steam. 

 



 

Fig. S7 DRIFT spectra of MnO2-GOS-TiO2 treated by flowing (a) 1000 ppm NO + 2 vol % O2 (b) 

50 °C upon passing NO + O2 over the 1000 ppm NH3 (c) 50 °C upon passing NO + O2 over the 

NH3 + SO2. 

Figure S7a showed the NO + O2 DRIFT spectra of MnO2-GOS-TiO2, while Figures S7b and S7c 

showed that the catalyst adsorbed NH3 and NH3 + SO2 first and then passed through NO + O2. From 

the 2 min results of Figures S7b and S7c, we could see that the introduction of SO2 does increase 

the adsorption of NH3 on the surface and it takes a longer time for NO + O2 to consume NH3. 

Therefore, the addition of SO2 (H2SO3, BrÖnsted acid) was conducive to the adsorption of NH3 on 

the catalyst. The activity of catalyst was naturally increased. 

 

Table S1 The S concentration of each catalyst measured by ICP after SO2-tolerance test 

Catalysts and conditions S concentration (mg/gMnO2) 

MnO2 at 150℃ for 3 h 5.11 

MnO2-GOS-TiO2 at 150℃ for 30 h 0.36 

MnO2-GOS-TiO2 at 200℃ for 6 h 4.10 

MnO2-GOS-TiO2-ITQ2 at 200℃ for 6 h 3.97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S2 Comparison of SO2-tolerant performance 

a SO2-tolerance time is only the test time, not the longest time to resist SO2 poisoning. 
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