Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information (ISE) for New Journal of Chemistry

The synthesis and investigation on the reversible conversion of layered ZrS_2 and ZrS_3

Dang Viet Quang,^{*[a]} and Khalid Al-Ali^{*[b, c]}

 ^a Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam
Email: <u>quanq.danqviet@phenikaa-uni.edu.vn</u>
^bDepartment of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
^cResearch and Innovation on CO₂ and H₂ center & Center for Catalysis and Separation, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
Email: khalid.alali@ku.ac.ae

Figure S1. A schematic illustration of the two-step thermochemical H₂S splitting cycle [1].

Figure S2. Schematic illustration of the experimental setup for the synthesis of metal sulfides from sulfur and metal; (a) tube setup without blocking effect, (b) tube setup with self-blocking effect, and (c) a photo of tubular reactor.

Figure S3. Phase diagram of Zr-S binary system in sulfur atmosphere, Zr : Solid_Alpha, Zr(s2): Solid_Beta, S(liq): liquid phase and S(s2): Beta_monoclinic

Figure S4. Diagram for Zr-S system showing the phase conversion of ZrS_3 and ZrS_2 under the experimental condition of N₂ atmosphere (pN₂ = 1 bar at room temperature)

Figure S5: XRD diffraction patterns of vanadium sulfides prepared under atmospheric pressure; 550 °C (a), 650 °C (b), and 750 °C (c)

Figure S6 a. SEM image shows the determination of the width and thickness of nanobelts (a ZrS_3 sample was synthesized at 550 °C with blocking effect)

Figure S6 b. SEM image of ZrS₃ nanobelts synthesized at 550 °C and atmospheric pressure

Figure S6 c. SEM image allows to view nanobelts in a large scale of a ZrS_3 sample that was synthesized at 550 °C with blocking effect

Figure S6 d. SEM image allows to view nanobelts in a large scale of a ZrS_3 sample that was synthesized at 650 °C

Figure S7. The equilibrium compositions of the decomposition reaction of H_2S by ZrS_2

Figure S8. The temperature dependence for the H_2/H_2S partial pressures in the decomposition reaction of H_2S by ZrS_2

References

[1] O. Osasuyi, K. Al-Ali, M. Abu Zahra, G. Palmisano, D. Viet Quang, Material screening for two-step thermochemical splitting of H_2S using metal sulfide, E3S Web Conf., 83 (2019) 01003.