Supporting Information

Dendritic silica with carbon dots and gold nanoclusters for dual nanozymes

Lirong Zhao, ^{a, c} Xiangling Ren, ^{*, a, c} Jing Zhang, ^a Wei Zhang ^b, Xudong Chen ^{*, b}

Xianwei Meng *, a

^a Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^b Department of Interventional Radiology, Shenzhen People's Hospital, Second
Clinical Medical College of Jinan University, First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen 518020, China

^c University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding author: Tel.: +86-010-82543521, E-mail: mengxw@mail.ipc.ac.cn (X. Meng)

Materials and Methods

SOD Activity-Like Detecting.

A substrate pyrogallol HCl solution (10 mM) was freshly prepared before use. The dSCS-Au NPs with different concentrations were mixed with Tris-HCl buffer solution (pH = 8.2, containing 1 mM EDTA-2Na). The timer started after 10 µL of pyrogallol solution was added. The total volume of the mixture was 4 ml. The SOD activities were analysed by monitoring the absorbance change at 325 nm.

HRP Activity-Like Detecting.

The HRP-mimic catalytic reactions were carried out at room temperature with a certain amount of dSCS-Au NPs in 2ml of acetate buffer (pH 4.5) in the presence of H_2O_2 (10 mM), using 0.2 mg 3,3',5,5'-Tetramethylbenzidine (TMB) as the substrate. The HRP activities of dSCS-Au NPs were analysed by monitoring the absorbance change at 652 nm.

Fig. S1. TEM images of the dSs prepared at the molar ratio of CTAB and NaSal were 1:0.5 (A), 1:1 (B), and 1:1.5 (C).

Fig. S2. The fluorescence intensity of C-dots solution (A) and dSCSs solution (B)

with different concentrations.

Fig. S3 The fluorescence properties of dSCSs were measured by fluorescence spectroscopy at 350 nm with different loading amounts of C-dots.

Fig. S4 The fluorescence properties of dSCS-Au NPs were measured by fluorescence spectroscopy at 350 nm with different loading amounts of Au NCs.

Elements	Weight percentage	Atomic percent
СК	21.62	33.32
ОК	36.65	42.40
Si K	33.16	21.85
Cu K	8.25	2.40
Au L	0.31	0.03
Total quantity	100.00	

Fig. S5. The electron diffraction spectroscopy of the dSCS-Au NPs sample.

Fig. S6. The UV-Vis absorption spectra of the reaction products of TMB oxidation in the presence of dSCSs without gold particles (pH=4.5).

Fig. S7. Time-dependent absorbance changes at 652 nm of HRP activity detection system with GSH-Au NCs or dSCS-Au NPs. The ultraviolet absorptive value of the starting point (0 min) was defined as I_0 and the ultraviolet absorptive value measured at different time was defined as I.

Samples	The concentration of samples (mg/mL)	The amount of samples (mg/mL)	The content of Au	The amount of Au (µg/mL)
GSH-Au NCs	2.3	0.23	8.10%	18.63
dSCS-Au NPs	12.9	1.29	0.32%	4.128

Tab. S1. The mass percent of Au in GSH-Au NCs and dSCS-Au NPs with ICP.