Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supporting Information

Tunable Electrochemiluminescence from Mixed-Monovalent Cation Perovskite Nanocrystals

Lu Chen,^a Qi Kang, *^a Zhe Li, ^a Bin Zhang,^b Guizheng Zou^b and Dazhong Shen*^a

^a College of Chemistry, Chemical Engineering and Materials Science,Shandong Normal University, Jinan 250014, China. E-mail: <u>kangqi@sdnu.edu.cn</u> (Q. Kang), dzshen@sdnu.edu.cn (D.Shen)

^b School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

Contents

Colour graphic

- Figure S1. TEM images of Rb_xCs_{1-x}PbBr₃ NCs
- Table S1. PL lifetime parameters for CsPbBr₃ NCs and Rb_{0.2}Cs_{0.8}PbBr₃ NCs.
- Figure S2. High-resolution XPS spectra of Rb_{0.2}Cs_{0.8}PbBr₃ NCs
- Figure S3. Comparison of the ECL and PL spectra of Rb_xCs_{1-x}PbBr₃ NCs
- Figure S4. Hole injecting ECL transients of CsPbBr₃ NCs|GCE
- **Figure S5.** Influence of scan rate on CV and ECL profiles of Rb_{0.2}Cs_{0.8}PbBr₃ NCs|GCE

Figure S6. Annihilation ECL profiles of Rb_xCs_{1-x}PbBr₃ NCs|GCE

Colour graphic: Dependence of the anodic ECL emission spectra, intensity and peak potential on the *x* in $Rb_xCs_{1-x}PbBr_3$.

Figure S1. TEM images of Rb_xCs_{1-x}PbBr₃ NCs

Samples	$ au_1$ ns	B ₁	$ au_2$ ns	B ₂	τ* ns
CsPbBr ₃	21.8	2403.6	47.8	596.2	30.9
Rb _{0.2} Cs _{0.8} PbBr ₃	30.5	2603.4	85.3	395.6	46.8

Table S1. PL lifetime parameters for CsPbBr₃ NCs and Rb_{0.2}Cs_{0.8}PbBr₃ NCs.

The PL lifetime traces of both $CsPbBr_3 NCs$ and $Rb_{0.2}Cs_{0.8}PbBr_3NCs$ could be well fitted with a bi-exponential model by the following equations:

 $I(t) = B_1 \exp(-t/\tau_1) + B_2 \exp(-t/\tau_2)$

Where I is the luminescence intensity; B_1 and B_2 are constants; t is time; τ_1 , τ_2 and τ_3 are lifetimes for the exponential components.

The average lifetime τ^* constant is counted by the following equation:

 $\tau^{*}=(B_{1}\tau_{1}^{2}+B_{2}\tau_{2}^{2})/(B_{1}\tau_{1}+B_{2}\tau_{2})$

Figure S2. High-resolution XPS spectra of (a) Cs $3d_{3/2}$ and $3d_{5/2}$, (b) Pb $4f_{5/2}$ and $4f_{7/2}$, (c) Rb $3d_{3/2}$ and $3d_{5/2}$, (d) Br 3d of the Rb_{0.2}Cs_{0.8}PbBr₃ NCs.

Figure S3. Comparison of the influence of Rb^+ content (*x*) on the tunable anodic ECL peak position (A) and FWHM in PL emission spectra (B) of $Rb_xCs_{1-x}PbBr_3NCs$.

Figure S4. Electron injecting initialed ECL transients of CsPbBr₃ NCs|GCE (black line) by stepping the potential between (A) -0.88 V and 0.85 V, (B) -0.88 and 1.23 V, (C) -1.42 V and 0.85 V, (D) -1.42 V and 1.23 V, (E) -1.72 V and 0.85 V, (F) -1.72 V and 1.23 V at 1 Hz for 40 s in air-free dichloromethane containing 0.10 M TBAPF₆. The blue lines indicate the applied potential steps. Insets: corresponding ECL emission spectra of CsPbBr₃ NCs|GCE (pink line). The exposure time of the CCD was 40 s.

Figure S5. (A) CV and (B) potential-ECL profiles of $Rb_{0.2}Cs_{0.8}PbBr_3 NCs|GCE$ in dichloromethane containing 0.1 M TBAPF₆ by scanning the electrode from 0 \rightarrow -2.0 V \rightarrow 2.0 V \rightarrow 0 at different scan rates. Inset: Anodic ECL intensity at different scanning rates.

Figure S6. ECL profiles of $Rb_xCs_{1-x}PbBr_3$ NCs|GCE in air-free dichloromethane containing 0.1mM TBAPF₆ with negative (blue lines) or positive (black lines) initial potential scan from 0 V. The scanning rate was 500 mV/s. (The inset arrows indicated the potential scan direction)