Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Solvent- and concentration-induced self-assembly of an amphiphilic perylene dye

Antonella Caterina Boccia,^a Vladimir Lukes ^b Anita Eckstein-Andicsovà, ^c and Erika Kozma ^a

Fig. S1 ESI. 2D COSY spectrum of PDA-CA in DMSO, $2.1 \cdot 10^{-2}$ M, 298 K

Fig. S2 ESI. HMBC spectrum of PDA-CA in DMSO, $2.1 \cdot 10^{-2}$ M, 298 K

Fig. S3 ESI. ¹H NMR spectrum of PDA-CA in DMSO, $2.1 \cdot 10^{-2}$ M, (full spectrum).

Fig. S4 ESI. Variable-concentration ¹H NMR measurement of PDA-CA at 298 K, in DMSO.

Fig. S5 ESI. ¹H NMR spectra of **PDA-CA** methylene signal bonded to N ($2.1 \cdot 10^{-2}$ M), at variable temperature, in DMSO.

Fig. S6 ESI. ¹H NMR spectra of expanded aromatic region of **PDA-CA** (7.0·10⁻³ M), in: a) DMSO; b) D₂O.

Fig. S7 ESI. Cyclic voltammetry of PDA-CA in sodium sulfate 0.1M solution

Cyclic voltammetry measurements were performed in solution, under nitrogen atmosphere with a computer controlled Amel 2053 (with Amel 7800 interface) electrochemical workstation in a three electrode single-compartment cell using platinum electrodes and SCE as standard electrode, with Fc/Fc+ redox couple as internal standard, with a sodium sulfate solution (0.1M) in water at a scan rate of 50 mV·s⁻¹.

Conformation	Gas	DMSO	Water
syn-a			
$E_{\rm ele}$ / hartree	-1909.339663	-1909.380618	-1909.386761
H / hartree	-1908.738219	-1908.779984	-1908.787275
syn-b			
$E_{\rm ele}$ / hartree	-1909.326605	-1909.371838	-1909.380860
H / hartree	-1908.726871	-1908.772009	-1908.779766
$\Delta E_{\rm ele} / {\rm kJ} \cdot { m mol}^{-1}$	34.2	23.0	15.5
$\Delta H / \text{kJ} \cdot \text{mol}^{-1}$	29.8	20.9	19.7
Conformation	Gas	DMSO	Water
anti-a			
$E_{\rm ele}$ / hartree	-1909.333988	-1909.380685	-1909 387066

anti-a			
$E_{\rm ele}$ / hartree	-1909.333988	-1909.380685	-1909.387066
H / hartree	-1908.733064	-1908.779359	-1908.784021
anti-b			
$E_{\rm ele}$ / hartree	-1909.324151	-1909.368613	-1909.374316
H / hartree	-1908.724257	-1908.769820	-1908.772826
$\Delta E_{\rm ele} / {\rm kJ} \cdot {\rm mol}^{-1}$	25.8	31.7	33.4
$\Delta H / \text{kJ} \cdot \text{mol}^{-1}$	23.1	25.0	29.4

Fig. S8 ESI. The B3LYP/6-31G(d,p) electronic energies (E_{ele}), enthalpies (H) and Gibb's free energies (G) calculated for the gas-phase, DMSO and water environment. The energy differences are calculated with respect to the closed conformation.

	Gas		DMSO		Water
syn-a					
$S_0 \rightarrow S_1$	481 nm (0.505)		492 nm (0.730))	488 nm (0.743)
$S_0 \rightarrow S_2$	474 nm (0.000))	436 nm (0.007)		418 nm (0.003)
$S_0 \rightarrow S_3$	474 nm (0.084))	436 nm (0.000)		417 nm (0.000)
$S_0 \rightarrow S_4$	376 nm (0.001)		366 nm (0.005)		351 nm (0.011)
$S_0 \rightarrow S_5$	376 nm (0.014))	363 nm (0.000)		346 nm (0.004)
syn-b					
$S_0 \rightarrow S_1$	477 nm (0.579))	489 nm (0.722)	487 nm (0.735)
$S_0 \rightarrow S_2$	427 nm (0.002))	401 nm (0.001)		395 nm (0.001)
$S_0 \rightarrow S_3$	426 nm (0.000)		401 nm (0.000)		395 nm (0.000)
$S_0 \rightarrow S_4$	392 nm (0.001)		379 nm (0.000)		356 nm (0.000)
$S_0 \rightarrow S_5$	389 nm (0.017)		377 nm (0.008)		356 nm (0.004)
Conformation	Gas		DMSO		Water
anti-a					
$S_0 \rightarrow S_1$	473 nm (0.164)	48	87 nm (0.780)	4	87 nm (0.766)
$S_0 \rightarrow S_2$	473 nm (0.000)	43	36 nm (0.001)	4	20 nm (0.001)
$S_0 \rightarrow S_3$	472 nm (0.477)	43	35 nm (0.002)	4	20 nm (0.000)
$S_0 \rightarrow S_4$	378 nm (0.001)	36	66 nm (0.000)	3	55 nm (0.001)
$S_0 \rightarrow S_5$	374 nm (0.000)	36	62 nm (0.001)	3	49 nm (0.000)
anti-b					
$S_0 \rightarrow S_1$	469 nm (0.615)	48	85 nm (0.735)	4	81 nm (0.748)
$S_0 \rightarrow S_2$	422 nm (0.000)	39	93 nm (0.000)	3	93 nm (0.000)
$S_0 \rightarrow S_3$	422 nm (0.000)	39	93 nm (0.000)	3	92 nm (0.000)
$S_0 \rightarrow S_4$	378 nm (0.001)	37	75 nm (0.000)	3	50 nm (0.000)
$S_0 \rightarrow S_5$	377 nm (0.003)	37	73 nm (0.002)	3	47 nm (0.000)

Fig. S9 ESI. The TD-B3LYP/6-31G(d,p) optical transitions of *syn-* and *anti*-isomers calculated for gas-phase and solvent environments. The values in parentheses stand for the oscillator strengths.

	D(syn-a)	D(anti-a)	D(syn/anti-a)
$S_0 \rightarrow S_1$	559 nm (0.018)	564 nm (0.027)	573 nm (0.016)
$S_0 \rightarrow S_2$	558 nm (0.018)	553 nm (0.006)	549 nm (0.022)
$S_0 \rightarrow S_3$	482 nm (0.349)	480 nm (0.434)	480 nm (0.371)
$S_0 \rightarrow S_4$	482 nm (0.390)	474 nm (0.323)	482 nm (0.351)
$S_0 \rightarrow S_5$	447 nm (0.001)	427 nm (0.001)	433 nm (0.001)
$S_0 \rightarrow S_6$	447 nm (0.002)	427 nm (0.005)	428 nm (0.003)
$S_0 \rightarrow S_7$	438 nm (0.002)	426 nm (0.001)	425 nm (0.001)
$S_0 \rightarrow S_8$	436 nm (0.002)	426 nm (0.000)	418 nm (0.000)
$S_0 \rightarrow S_9$	434 nm (0.000)	409 nm (0.000)	416 nm (0.000)
$S_0 \rightarrow S_{10}$	434 nm (0.000)	408 nm (0.000)	413 nm (0.001)

Fig. S10 ESI. The gas-phase TD-B3LYP/6-31G(d,p) optical transitions of model π -dimers. The values in parentheses stand for the oscillator strengths.

HOMO–1 \rightarrow LUMO (63%)

HOMO–1 \rightarrow LUMO (37%)

 $\text{HOMO} \rightarrow \text{LUMO+1 (63\%)}$

HOMO \rightarrow LUMO (83%)

 $S_0 \rightarrow S_2$: 2.24 eV / 553 nm, *f* = 0.006

 $S_0 \rightarrow S_1$: 2.20 eV / 564 nm, f = 0.027

HOMO \rightarrow LUMO+1 (37%)

S₀→S_{4:} **2.60 eV / 478 nm,** *f* = *0.33*9

HOMO–1 \rightarrow LUMO+1 (82%)

Fig. S11 ESI. Plots of the B3LYP/6-31G(d,p) molecular orbitals significantly contributing to the first four gas-phase lowest energy TD-B3LYP optical transitions for symmetric **D**(**anti-a**) π -dimer. The values in parentheses stand for percentages of excitation contributions in individual transitions. The value of the depicted isosurface is 0.035 bohr^{-3/2}. The symbol *f* denotes oscillator strength.

Fig. S12 ESI. The dependence of the two lowest gas-phase TD-B3LYP//B3LYP-D/6-31G(d,p) energy optical transitions on the interplane distances displacement of rigid monomers for model **D(syn-a)** (a) and **D(anti-a)** (b) π -dimers. The distance difference ΔR is defined with respect to the gas-phase equilibrium interplane distances 3.38 Å for **D(syn-a)** dimer and 3.39 Å for **D(anti-a)** dimer.

Fig. S13 ESI. The B3LYP-D optimal gas-phase geometry of model hydrogen-bonded H-dimer consisting of two **syn-b** molecules.