Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

Coordination Control of a Semicarbazide Schiff Base Ligand for Spontaneous Aggregation of a Ni₂Ln₂ Cubane Family: Influence of Ligand Arms and Carboxylate Bridges on the Organization of the Magnetic Core

Mousumi Biswas,^a E. Carolina Sañudo^b, ^c Jordi Cirera^{b,d} and Debashis Ray*,^a

^aDepartment of Chemistry, Indian Institute of Technology, Kharagpur 721302, India ^bDepartament de Química Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona SPAIN ^cInstitut de Nanociència i Nanotecnologia, Universitat de Barcelona, (IN2UB) 08028 Barcelona SPAIN ^dInstitut de Química Teòrica i Computacional, Universitat de Barcelona (IQTC-UB), Martí i Franqués 1-11,

08028, Barcelona, Spain

E-mail: dray@chem.iitkgp.ac.in

Figure S1. FT-IR spectra of complexes 1-4

Figure S2. UV-Vis spectra of complexes 1-4 in solution (left) and in solid state (right)

Figure S3. Simulated and experimental powder XRD patterns of complexes 1-4

Figure S4. Thermogravimetric (TG) analysis of complexes 1-4. The % of weight loss in 40-125 °C is 5.8, 4.4, 5.3, 5.4 for complexes 1-4 respectively.

Scheme S1 Most probable aggregation route

Figure S5. Molecular structure of complex 1(a), 3(b) and 4(c)

Figure S6. The angle α , half of the angle between the opposite ligands within a hemisphere

Bond lengths (Å)						
	1 (Gd)	2 (Tb)	3 (Dy)	4 (Ho)		
Ln1–O2	2.465(6)	2.474(5)	2.419(8)	2.442(3)		
Ln1–O3	2.361(7)	2.341(6)	2.312(8)	2.330(4)		
Ln1–O4	2.394(7)	2.411(7)	2.374(9)	2.428(4)		
Ln1–O5	2.530(9)	2.556(7)	2.520(10)	2.561(4)		
Ln1–O7	2.337(7)	2.340(6)	2.318(9)	2.337(4)		
Ln1–O11	2.371(9)	2.367(7)	2.331(9)	2.340(4)		
Ln1–O13	2.342(8)	2.317(6)	2.309(8)	2.297(4)		
Ln1–O17	2.410(7)	2.405(7)	2.393(9)	2.397(4)		
Ni1–N1	1.997(9)	2.017(7)	1.996(10)	2.022(5)		
Ni1–O1	2.035(8)	2.059(6)	2.033(8)	2.065(4)		
Ni1–O2	2.231(6)	2.230(5)	2.198(8)	2.250(3)		
Ni1–O3	2.003(7)	2.012(6)	1.989(8)	2.022(3)		
Ni1O10	2.048(7)	2.050(6)	2.037(9)	2.060(4)		

Table S1. Selected bond lengths (Å) and bond angles (°) for complexes 1-4

Ni1–O15	2.067(9)	2.072(7)	2.058(9)	2.068(4)
Ln2–O1	2.467(8)	2.486(6)	2.453(8)	2.442(4)
Ln2–O3	2.357(8)	2.366(6)	2.317(9)	2.346(4)
Ln2–O4	2.388(7)	2.384(7)	2.330(11)	2.342(4)
Ln2–O6	2.595(11)	2.620(9)	2.554(12)	2.561(5)
Ln2–O9	2.332(9)	2.320(8)	2.291(11)	2.317(4)
Ln2–O12	2.344(9)	2.351(8)	2.293(10)	2.314(4)
Ln2–O18	2.389(11)	2.392(9)	2.376(12)	2.372(4)
Ln2-O19	2.436(11)	2.437(10)	2.415(14)	2.437(5)
Ni2-N4	1.998(10)	2.024(7)	1.978(11)	2.032(5)
Ni2-O1	2.237(7)	2.227(6)	2.203(8)	2.228(4)
Ni2-O2	2.030(7)	2.050(6)	2.016(8)	2.069(3)
Ni2-O4	2.000(8)	2.011(6)	1.984(9)	2.020(4)
Ni2-08	2.064(7)	2.059(6)	2.074(9)	2.083(4)
Ni2016	2.083(8)	2.089(7)	2.072(9)	2.107(4)
Ln1–Ln2	3.786	3.779	3.737	3.772
Ln1–Ni1	3.541	3.538	3.475	3.492
Ln1–Ni2	3.423	3.440	3.390	3.443
Ln2–Ni1	3.384	3.396	3.355	3.377
Ln2–Ni2	3.593	3.598	3.544	3.567
Ni1–Ni2	3.209	3.225	3.181	3.255

Bond angles (°)						
	(1) Gd	(2) Tb	(3) Dy	(4) Ho		
Ni1–O1–Ni2	97.3(3)	97.5(2)	97.3(3)	98.54(15)		
Ni1–O1–Ln2	97.0(3)	96.2(2)	96.4(3)	96.71(14)		
Ni2-O1-Ln2	99.5(3)	99.3(2)	99.0(3)	99.49(13)		
Ni1–O2–Ni2	97.6(3)	97.7(2)	98.0(3)	97.72(14)		
Ni1–O2– Ln1	97.8(2)	97.4(2)	97.6(3)	96.94(13)		
Ni2–O2– Ln1	98.8(3)	98.6(2)	99.3(3)	99.15(13)		
Ni1–O3– Ln1	108.2(3)	108.5(2)	107.6(3)	107.55(15)		
Ni1–O3– Ln2	101.5(3)	101.4(2)	102.1(3)	100.99(15)		
Ln1–O3– Ln2	106.7(3)	106.8(2)	107.7(3)	107.55(13)		
Ni2-O4- Ln1	102.0(3)	101.8(3)	101.8(4)	101.06(15)		
Ni204 Ln2	109.6(3)	109.6(3)	110.2(4)	109.50(16)		
Ln1–O4– Ln2	104.7(3)	104.0(2)	105.2(3)	104.51(13)		

*Structure	OP-8	HPY-8	HBPY-	CU-8	SAPR-	TDD-	JGBF-8	JETBPY-	JBTPR-	BTPR-	JSD-8	TT-8	ETBPY-
$[ML_8]$			8		8	8		8	8	8			8
Complex1	31.475	23.355	16.134	10.479	2.415	0.623	13.801	30.013	2.602	2.114	2.976	11.321	25.679
Gd1													
Complex 1	28.023	23.070	17.265	11.103	0.737	2.332	15.010	26.736	2.333	1.353	4.668	11.912	22.003
Gd2													
Complex2	31.453	23.160	16.067	10.516	2.397	0.650	13.751	30.007	2.569	2.069	3.023	11.334	25.670
Tb1													
Complex2	28.486	22.433	16.776	10.762	0.755	2.424	14.914	26.370	2.421	1.533	4.761	11.549	21.720
Tb2													
Complex3	31.261	23.125	16.187	10.533	2.267	0.674	13.539	30.020	2.482	1.972	3.017	11.381	25.184
Dy1													
Complex3	28.520	22.506	17.349	11.097	0.684	2.450	15.393	26.144	2.632	1.765	4.915	11.857	21.490
Dy2													
Complex4	31.882	22.617	16.343	10.549	2.246	0.722	13.429	29.941	2.362	1.899	3.151	11.347	25.410
Hol													
Complex4	29.132	22.137	16.492	10.483	0.698	2.437	14.865	26.490	2.492	1.781	4.792	11.283	21.639

 Table S2. Continuous Shape Measures Analysis for all Lanthanide ions. List of reference shapes and abbreviations. Bold is for the lowest value for each metal center

*OP-8	D_{8h}	Octagon
HPY-8	C_{7v}	Heptagonal pyramid
HBPY-8	D_{6h}	Hexagonal bipyramid
CU-8	O_h	Cube
SAPR-8	D_{4d}	Square antiprism
TDD-8	D_{2d}	Triangular dodecahedron
JGBF-8	D_{2d}	Johnson gyrobifastigium J26
JETBPY-8	D_{3h}	Johnson elongated triangular bipyramid J14
JBTPR-8	C_{2v}	Biaugmented trigonal prism J50
BTPR-8	C_{2v}	Biaugmented trigonal prism
JSD-8	D_{2d}	Snub diphenoid J84
TT-8	T _d	Triakis tetrahedron
ETBPY-8	D_{3h}	Elongated trigonal bipyramid

Ho2

Table S3. The overview of the structural and magnetic parameters for some Ni₂-Ln₂ cube complexes

CSD code	J values (cm ⁻¹)	Angles	Remarks	Reference No.
OTEXUH	J(Ni-Ni) = -3.638 $J(Ni-Gd) = 0.919$ $J(Gd-Gd) = assumed$ as '0'	<ni-o-ni =<br="">99.72°, 98.44° <gd-o-gd =<br="">108.77°, 109.36°</gd-o-gd></ni-o-ni>	Ni2Dy2complexdisplaysslowrelaxationofmagnetization	52
WAMXIT	J(Ni-Ni) = +3.28 J(Ni-Gd) = +0.46 J(Gd-Gd) = -0.19	<ni-o-ni =<br="">96.65°, 98.56° <gd-o-gd =<br="">102.66°, 104.27°</gd-o-gd></ni-o-ni>	The Ni ₂ Dy ₂ complex does not behave as a SMM	57
REWXIC	J(Ni-Ni) = +3.30 J(Ni-Gd) = +0.26 J(Gd-Gd) = -0.11	<ni-o-ni< math=""> = 98.06° <gd-o-gd< math=""> = 109.62°</gd-o-gd<></ni-o-ni<>	Out-of-phase signals in ac susceptibilities above 1.9 K was not observed	58

DIJFOU	J(Ni-Ni) = +5.20	<ni-o-ni< th=""><th>=</th><th>Ni₄Dy₄ Complex is</th><th>59</th></ni-o-ni<>	=	Ni ₄ Dy ₄ Complex is	59
	J(Ni-Gd) = +0.86	98.63°, 98.13°		not SMM	
	J(Gd-Gd) = -0.0034	<gd-o-gd< td=""><td>=</td><td></td><td></td></gd-o-gd<>	=		
		108.14°, 109.04°			
Complex-1	J(Ni-Ni) = -0.91	<ni-o-ni< td=""><td>=</td><td>Out-of-phase ac</td><td>This work</td></ni-o-ni<>	=	Out-of-phase ac	This work
	J(Ni-Gd) = +0.02	97.46°, 97.67°		susceptibility signals	
	J(Gd-Gd) = +0.14	<gd-o-gd< td=""><td>=</td><td>absent</td><td></td></gd-o-gd<>	=	absent	
		104.48°, 106.91°			