New Journal of Chemistry

Supplementary Information

Theoretical Study on the Structure and Electronic Properties of Alkylimidazolium Iodide Ionic Liquids: The Effect of Alkyl Chain Length

Leila Darabi and Morteza Zare*

(Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz,

Iran)

^{*} Corresponding author. *E-mail*: m.zare@scu.ac.ir; zare.su@gmail.com Tel./Fax: (+98) 61 33331042

	[C ₄ mim] ⁺	[C ₅ mim] ⁺	$[C_6mim]^+$	[C ₇ mim] ⁺	$[C_8mim]^+$
N1	-0.362	-0.362	-0.361	-0.361	-0.361
C2	0.288	0.288	0.287	0.287	0.287
N3	-0.365	-0.365	-0.365	-0.365	-0.342
C4	0.012	0.011	0.011	0.011	0.011
C5	0.009	0.009	0.009	0.009	0.009
C6	-0.342	-0.342	-0.342	-0.342	-0.342
C7	-0.162	-0.161	-0.160	-0.160	-0.160
C8	-0.400	-0.395	-0.394	-0.394	-0.394
C9	-0.379	-0.391	-0.387	-0.386	-0.385
C10	-0.580	-0.373	-0.385	-0.380	-0.379
C11	_	-0.582	-0.374	-0.386	-0.381
C12	_	-	-0.581	-0.373	-0.385
C13	—	—	_	-0.581	-0.373
C14	—	-	_	_	-0.581
H15	0.237	0.237	0.237	0.237	0.237
H16	0.245	0.244	0.244	0.244	0.244
H17	0.245	0.245	0.245	0.245	0.245
C2-H15	0.525	0.525	0.524	0.524	0.524
C4–H16	0.257	0.255	0.255	0.255	0.255
C5–H17	0.254	0.254	0.254	0.254	0.254

Table S1. Selected partial charges from NBO analysis for $[C_n mim]^+$, n=4–8, at the MP2/DGDZVP level.

[C₄mim]⁺

[C₅mim]⁺

 $[C_6 mim]^+$

Figure S1. The obtained MEP maps for $[C_n mim]^+$, n=4-8.

 $[C_8 mim]^+$

Figure S2. Correlation between interaction energy calculated at the MP2/6-311++G(d,p)[def2-QZVPP] level and density at (a) 308 K and (b) 323 K.

Figure S3. Correlation between interaction energy calculated at the MP2/6-311++G(d,p)[def2-QZVPP] level and experimental surface tension at (a) 298 K and (b) 323 K.

Figure S4. Correlation between the dissociation energies obtained by mass spectrometry experiments¹ and experimental surface tensions² at 293.15 K.

Figure S5. Correlation between interaction energy calculated at the MP2/6-11++G(d,p)[def2-QZVPP] level and experimental melting point for the [C_nmim]I ILs, with $n \le 4$.

Figure S6. Correlation between formation energy calculated at the MP2/DGDZVP level and density at (a) 308 K and (b) 323 K.

Figure S7. Correlation between formation energy calculated at the MP2/DGDZVP level and experimental surface tension at (a) 298 K and (b) 323 K.

Figure S8. Correlation between formation energy calculated at the MP2/DGDZVP level and experimental melting point for the [C_n mim]I ILs, with $n \le 4$.

Figure S9. Correlation between formation energy calculated at the MP2/6-311++G(d,p)[def2-QZVPP] level and density at (a) 308 K and (b) 323 K.

Figure S10. Correlation between formation energy calculated at the MP2/6-311++G(d,p)[def2-QZVPP] level and experimental surface tension at (**a**) 298 K and (**b**) 323 K.

Figure S11. Correlation between formation energy calculated at the MP2/6-11++G(d,p)[def2-QZVPP] level and experimental melting point for the [C_nmim]I ILs, with $n \le 4$.

References

1 A. M. Fernandes, M. A. A. Rocha, M. G. Freire, I. M. Marrucho, J. A. P. Coutinho and L. M. N. B. F. Santos, *J. Phys. Chem. B*, 2011, **115**, 4033–4041.

2 P. J. Carvalho, M. G. Freire, I. M. Marrucho, A. J. Queimada and J. A. P. Coutinho, *J. Chem. Eng. Data*, 2008, **53**, 1346–1350.