New Journal of Chemistry

Supplementary information for the manuscript

Catalytic Systems Based on Nickel (II) Complexes with Bis(3,5dimethylpyrazol-1-yl)methane – Impact of PPh₃ on the Formation of Precatalysts and Selective Dimerization of Ethylene

Zubkevich S.V.*^[a], Tuskaev V.A.^{[a],[b]}, Gagieva S.Ch.^[a], Pavlov A.A.^[b], Khrustalev V.N.^{[c],[d]},

Polyakova O.V.^[a], Zarubin D.N.^[b], Kurmaev D.A.^[a], Kolosov N.A.^[a], Bulychev B.M.^[a]

^[a] Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 11, Moscow 119991, Russian Federation

^[b] A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova st., 28, Moscow 119334, Russian Federation

^[c] National Research Center "Kurchatov Institute", Acad. Kurchatov Sq., 1, Moscow 123182, Russian Federation

^[d] Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St., 6, Moscow 117198, Russian Federation

Figure S1. ¹H NMR (600 MHz) spectrum of 2 in CD_3CN .

Figure S2. ¹H NMR (600 MHz) spectrum of 2 + 1 equiv. PPh₃ in aceton-d₆.

Figure S3. ¹H NMR (600 MHz) spectrum of 3 in CD_2Cl_2 .

Figure S4. ¹H NMR (600 MHz) spectrum of 4 in CD_2Cl_2 .

Figure S5. ³¹P NMR (400 MHz) spectrum of $\mathbf{2} + 1$ equiv. PPh₃ in toluene-d₈.

Figure S6. ³¹P NMR (400 MHz) spectrum of $\mathbf{2} + 1$ equiv. PPh₃ + 10 equiv. Et₂AlCl in toluened₈.

Figure S7. ³¹P NMR (400 MHz) spectrum of 2 titrated with PPh₃ in CD₂Cl₂.

Compound	3	4
Empirical formula	$C_{62}H_{68}Br_6N_{10}Ni_3P_2$	C46H59Br4N8Ni2O1.50P
Formula weight	1670.67	1215.96
Temperature, K	100(2)	100(2)
Crystal system	Triclinic	Monoclinic
Space group	P-1	<i>P</i> 2 ₁ /n
<i>a</i> , Å	9.6743(19)	14.695(3)
b, Å	10.044(2)	10.158(2)
<i>c</i> , Å	20.289(4)	35.371(7)
α , deg.	79.47(3)	90
β , deg.	76.24(3)	91.65(3)
<i>γ</i> , deg.	64.55(3)	90
$V, Å^3$	1721.8(7)	5277.7(18)
Ζ	1	4
$D_{\text{calc}}, \text{g/cm}^3$	1.611	1.530
Absorption coefficient, μ	3.208	5.177
F(000)	834	2456
Crystal size, mm	0.20 x 0.10 x 0.02	0.12 x 0.07 x 0.02
Theta range for data	3.235 to 35.998	3.349 to 30.981
collection		
Index ranges	-11<=h<=11,-12<=k<=12,- 24<=l<=24	-18<=h<=17,-13<=k<=12,- 43<=l<=44
Reflections collected	18142	40148
Independent reflections, $R_{\rm int}$	6152 [R(int) = 0.0996]	11204 [R(int) = 0.1058]
Reflections observed with $I > 2\sigma(I)$	3867	7873
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents
Data / restraints/ parameters	6152 / 0 / 382	11204 / 10 / 595
Goodness-of-fit on F^2	0.808	1.020
$R_1 \left[I > 2\sigma(I) \right]$	0.1139	0.0766
wR_2 [all data]	0.2933	0.1971
Extinction coefficient	0.0104(10)	0.0056(3)
T _{min} / T _{max}	0.6 / 0.93	0.570 / 0.9

 Table S1. Crystal data and structure refinements for complexes 3-4

Figure S8. Dependencies of 1-butene (A) and α -olefin (B) shares on activity of 2/Et₂AlCl 150 with different amounts of Ph₃P.

Figure S9. Change of complex 2 solution colors in CD_2Cl_2 with the addition of Ph_3P : (A) – pure complex, (B) – 2 + 0,1 mol. equiv. of Ph_3P , (C) – 2 + 0,2 mol. equiv. of Ph_3P , (D) – 2 + 0,5 mol. equiv. of Ph_3P , (E) – 2 + 1 mol. equiv. of Ph_3P , (F) – 2 + 2 mol. equiv. of Ph_3P , (G) – 2 + 5 mol. equiv. of Ph_3P .

Figure S10. Colors of complexes 2-4 in CH₂Cl₂ solutions

Figure S11. UV-Vis spectrum of complex 2 titrated with Ph₃P in toluene.

Figure S12. UV-Vis spectrum of complex 4 in CH₂Cl₂.

Figure S13. UV-Vis spectrum of complex 3 in CH₂Cl₂.

Figure S15. Part GC–MS total ion current chromatogram run 4, Table 2, system 2/Et₂AlCl 150

Figure S16. GC–MS total ion current chromatogram of run 5, Table 2, system 2/Et₂AlCl 150/Ph₃P 1

Figure S17. Part GC–MS total ion current chromatogram of run 5, Table 2, system 2/Et₂AlCl 150/Ph₃P 1

Table S2.	Composition	of oligomer	m1xtures.

Isomers	2/Et ₂ AlCl 150	2/Et ₂ AlCl 150/Ph ₃ P 1
	Run 4	Run 5
Butenes	0,530	0,563
Hexenes	0,450	0,435
Octenes	0,002	0,002
Benzene + C5 ^[a]	0,006	-
Benzene + C9 ^[a]	0,004	-
Benzene + C13 ^[a]	0,008	-

^[a] C[number] - indicates number of carbon atoms in alkyl branches, attached to benzene