New Journal of Chemistry

Electronic Supplementary Information

Evaluation of the supramolecular interaction of Congo Red with cucurbiturils using mass spectrometry and spectroscopic methods

Ana L. Costa^a, Ana C. Gomes^a, André D. Lopes^b, José P. Da Silva^b, Martyn Pillinger^{a,*}, Isabel S. Gonçalves^a, J. Sérgio Seixas de Melo^{c,*}

 ^a Department of Chemistry, CICECO – Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
^b CCMar, and Department of Chemistry and Pharmacy, FCT, University of the Algarve, P-8005-039 Faro, Portugal
^c CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal

* Corresponding authors *E-mail*: mpillinger@ua.pt (MP), sseixas@ci.uc.pt (JSSM)

General instrumentation

Microanalyses (CHNS) were performed with a Truspec Micro CHNS 630-200-200 instrument. Powder X-ray diffraction (PXRD) was performed with automatic data acquisition (X'Pert Data Collector v4.2 software) and monochromated Cu-K_a radiation ($\lambda = 1.5406$ Å) using a Philips Analytical Empyrean ($\theta/2\theta$) diffractometer equipped with a PIXcel1D detector. Samples were step-scanned with 0.02° 2θ steps and a counting time of 50 s per step. Thermogravimetric analysis (TGA) was performed using a Shimadzu TGA-50 system at a heating rate of 5 °C min⁻¹ under air. FT-IR spectra were obtained as KBr pellets in the range of 300 to 4000 cm⁻¹ using a Mattson-7000 spectrophotometer. Raman spectra were recorded on a Bruker RFS100/S FT instrument (Nd:YAG laser, 1064 nm excitation, InGaAs detector). ¹H NMR spectra were obtained with a 500 MHz Jeol spectrometer equipped with a Royal HFX probe. Solid-state ¹³C{¹H} cross-polarisation (CP) magic-angle spinning (MAS) NMR spectra were recorded at 100.62 MHz on a Bruker Avance 400 spectrometer, using 3.5 µs ¹H 90° pulses, a 2 ms contact time, a spinning rate of 10 kHz, and 5 s recycle delays. Chemicals shifts are quoted in ppm relative to TMS.

Spectroscopic data for purified CR

FT-IR (cm⁻¹): v = 3456 (s, br), 2924 (w), 1610 (m), 1448 (w), 1421 (s), 1373 (m), 1227 (vs), 1176 (s, $v_{as}(SO_{3}^{-})$), 1118 (m), 1045 (s, $v_{s}(SO_{3}^{-})$), 1000 (w), 947 (w), 917 (w), 860 (w), 829 (m), 784 (w), 755 (m), 720 (w), 696 (w), 663 (w), 628 (w), 596 (w), 538 (w), 496 (w), 464 (w). ¹H NMR (300 MHz, DMSO-d_6): $\delta = 8.77$ (d, J_{H-H} = 8.6 Hz, H¹⁴), 8.43 (d, J_{H-H} = 8.2 Hz, H¹¹), 8.31 (s, H⁶), 8.10 (d, J_{H-H} = 8.6 Hz, H²), 7.96 (d, J_{H-H} = 8.7 Hz, H³), 7.74 (s, NH₂), 7.60 (t, J_{H-H} = 7.7 Hz, H¹³), 7.50 (t, J_{H-H} = 8 Hz, H¹²). The ¹H NMR spectrum is in agreement with that reported previously and has been assigned similarly (see below for atom numbering).¹ ${}^{13}C{}^{1}H$ CP MAS NMR: $\delta = 149.9$ (C¹), 138.8 (C¹⁰), 137.4 (C⁴), 126.7 (C^{3,5,7,8,12,14}), 124.8 (^{C2,9,11,13}), 114.4 (C⁶). Assignments for the solid-state ¹³C NMR spectrum are based on those made previously for the solution spectrum in DMSO-d₆.¹

Preparation and spectroscopic data for PrCR

Addition of 1 M HCl to an aqueous solution of CR (0.07 g, 0.1 mmol) resulted in a blue precipitate which was isolated by filtration, washed with water and air-dried. FT-IR (cm⁻¹): v = 3432 (s, br), 1611 (m), 1598 (s), 1543 (m), 1504 (m), 1475 (w), 1457 (w), 1421 (vs), 1360 (vs), 1280 (vs), 1172 (vs, $v_{4s}(SO_{3}^{-}))$, 1043 (s, $v_{5}(SO_{3}^{-}))$, 998 (s), 1000 (w), 947 (w), 917 (w), 829 (m), 784 (w), 755 (m), 720 (w), 696 (w), 663 (w), 628 (w), 596 (w), 538 (w), 496 (w), 464 (w). ¹H NMR (300 MHz, DMSO-d_6): $\delta = 8.74$ (d, J_{H-H} = 8.4 Hz, H¹⁴), 8.44 (d, J_{H-H} = 7.8 Hz, H¹¹), 8.31 (s, H⁶), 8.11 (d, J_{H-H} = 8.6 Hz, H²), 7.97 (d, J_{H-H} = 8.7 Hz, H³), 7.60 (t, J_{H-H} = 7.6 Hz, H¹³), 7.50 (t, J_{H-H} = 6 Hz, H¹²). ¹³C {¹H} CP MAS NMR: $\delta = 158.6$ (C¹), 139.5 (C¹⁰), 136.3 (C⁴), 132.4 (C⁵), 127.5 (C^{3,7,8,12,14}), 124.4 (C^{2,9,11,13}), 116.4 (C⁶) ppm. Assignments for the solid-state ¹³C NMR spectrum are based on those made previously for the solution spectrum in DMSO-d₆.¹

1. E. Pigorsch, A. Elhaddaoui, S. Turrell, Spectrochim. Acta 50A (1994) 2145-2152.

ESI-MS, ¹H NMR, PXRD and TGA data

Fig. S1 Full scan spectra of aqueous solutions of CB[7] and CB[8] with CR (50 μ M : 50 μ M) under positive ESI. The m/z values are of the first peak of the isotope series.

Fig. S2 ¹H NMR spectra of a) CB[7], b) CR, and c) mixture of CB[7] (1 mM) + CR (1 mM).

Fig. S3 Full scan spectrum of aqueous solutions of CR@CB[8] (50 μ M : 50 μ M) under negative ESI. The m/z values are of the first peak of the isotope series.

Fig. S4 PXRD patterns in the range of 4-30° 2θ of (a) CR, (b) CB[7], (c) CR@CB[7](RT), (d) CR@CB[7](100), (e) CB[8], (f) CR@CB[8](RT), and (g) CR@CB[8](100).

Fig. S5 TGA curves for CR, CB[n] and the CR@CB[n] adducts.

New Journal of Chemistry

Fig. S6 ¹³C{¹H} CP MAS NMR spectra of (a) CR, (b) PrCR, (c) CB[7], (d) CR@CB[7](RT), (e) CR@CB[7](100), (f) CB[8], (g) CR@CB[8](RT), and (h) CR@CB[8](100).

The ¹³C {¹H} CP MAS NMR spectra of CB[7] and CB[8] display broad and featureless signals centred at 156.3 ppm for the C=O groups, 71.4 ppm for the CH groups, and 52.8 ppm for the bridging CH₂ groups (Fig. S6). A similar set of peaks is present in the spectra of the CR@CB[*n*] adducts. In addition, several weak, overlapping resonances are observed in the 110-153 ppm range that can be attributed to unprotonated and/or protonated forms of CR. For CR@CB[7](RT), CR@CB[7](100) and CR@CB[8](RT), the spectral profiles in this chemical shift range are similar and resemble that observed for CR (Fig. S6(a)). On the other hand, the profile for CR@CB[8](100) (Fig. S6(h)) is different and more closely matches that for PrCR (Fig. S6(b)). The spectra are consistent with other measurements in indicating that on going from CR@CB[*n*](RT) to CR@CB[*n*](100) the CR content in the adducts decreases as does the relative proportion of the unprotonated form of CR.