Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

New Journal of Chemistry

REGIOSELECTIVE SYNTHESIS OF ORTHO-IODOBIPHENYLBORONIC ACID DERIVATIVES: A SUPERIOR CATALYST FOR CARBOXYLIC ACID ACTIVATION

Raed M. Al-Zoubi,* Walid K. Al-Jammal and Robert McDonald

Supporting Information

Table of Contents

Table of Cor	itents	i
1.	Experimental Details and Compound Data	1
1.1	General Information	1
1.2	General procedure for the synthesis of 5-substituted-2,3-diiodobiphenyls	1
1.2.1	Synthesis of 2.3-diiodo-1.1'-biphenyl (5)	
1.2.2	Synthesis of 2,3-diiodo-4'-isopropyl-1,1'-biphenyl (6)	
1.2.3	Synthesis of 3'-fluoro-2,3-diiodo-4'-methoxy-1,1'-biphenyl (7)	
1.2.4	Synthesis of 3,4-Diiodo-5-phenyltoluene (8)	
1.2.5	Synthesis of 2,3-diiodo-4'-isopropyl-5-methyl-1,1'-biphenyl (9)	
1.2.6	Synthesis of 3'-fluoro-2,3-diiodo-4'-methoxy-5-methyl-1,1'-biphenyl (10)	
1.2.7	Synthesis of 5-fluoro-2,3-diiodo-1,1'-biphenyl (11)	
1.2.8	Synthesis of 5-chloro-2,3-diiodo-1,1'-biphenyl (12)	
1.2.9	Synthesis of 5-bromo-2,3-diiodo-1,1'-biphenyl (13)	
1.2.10	Synthesis of 2,3-diiodo-5-methoxy-1,1'-biphenyl (14)	5
1.2.11	Synthesis of 2,3-diiodo-4'-isopropyl-1,1'-biphenyl (15)	5
1.2.12	Synthesis of 2,3-diiodo-3',5-dimethoxy-1,1'-biphenyl (16)	5
1.2.13	Synthesis of 3'-fluoro-2,3-diiodo-4',5-dimethoxy-1,1'-biphenyl (17)	6
1.2.14	Synthesis of 2,3-diiodo-5-methoxy-4'-(methoxymethyl)-1,1'-biphenyl (18)	6
1.2.15	Synthesis of 2,3-diiodo-4',5-dimethoxy-1,1'-biphenyl (19)	7
1.2.16	Synthesis of 2,3-diiodo-5-methoxy-3'-(trifluoromethoxy)-1,1'-biphenyl (20)	7
1.2.17	Synthesis of 2,3-diiodo-5-methoxy-4'-phenoxy-1,1'-biphenyl (21)	
1.2.18	Synthesis of 5-(2,3-diiodo-5-methoxyphenyl)benzo[d][1,3]dioxole (22)	
1.2.19	Synthesis of 5-(2,3-diiodo-5-methoxyphenyl)-2,3-dihydrobenzofuran (23)	9
1.2.20	Synthesis of 5-(2,3-diiodo-5-methoxyphenyl)-2-methoxypyridine (24)	9
1.2.21	Synthesis of methyl 5,6-diiodo-4'-isopropyl-[1,1'-biphenyl]-3-carboxylate (25)	9
1.3	General procedure for MIE reaction of 2,3-diiodo-5-substituted biphenyl derivatives and trimethylborate	
1.3.1	Synthesis of (2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (5 _A)	
1.3.2	Synthesis of (2-iodo-4'-isopropyl-[1,1'-biphenyl]-3-yl)boronic acid (6 _A)	11
1.3.3	Synthesis of (3'-fluoro-2-iodo-4'-methoxy-[1,1'-biphenyl]-3-yl)boronic acid (7_A)	11
1.3.4	Synthesis of (2-iodo-5-methyl-[1,1'-biphenyl]-3-yl)boronic acid ($f B_A$)	12
1.3.5	Synthesis of (2-iodo-4'-isopropyl-5-methyl-[1,1'-biphenyl]-3-yl)boronic acid (9_A)	12
1.3.6	Synthesis of (3'-fluoro-2-iodo-4'-methoxy-5-methyl-[1,1'-biphenyl]-3-yl) boronic acid (10 _A)	13
1.3.7	Synthesis of (5-fluoro-2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (11 _A)	13
1.3.8	Synthesis of (5-chloro-2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (12_A)	14
1.3.9	Synthesis of (5-bromo-2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (13 _A)	14
1.3.10	Synthesis of (2-iodo-5-methoxy-[1,1'-biphenyl]-3-yl) boronic acid (14_A)	15
1.3.11	Synthesis of (2-iodo-4'-isopropyl-5-methoxy-[1,1'-biphenyl]-3-yl)boronic acid (15 _A)	15
1.3.12	Synthesis of (2-iodo-3',5-dimethoxy-[1,1'-biphenyl]-3-yl)boronic acid (16A)	16
1.3.13	Synthesis of (3'-fluoro-2-iodo-4',5-dimethoxy-[1,1'-biphenyl]-3-yl) boronic acid (17 _A)	16
1.3.14	Synthesis of (2-iodo-5-methoxy-4'-(methoxymethyl)-[1,1'-biphenyl]-3-yl) boronic acid (18_A)	17
1.3.15	Synthesis of (2-iodo-4',5-dimethoxy-[1,1'-biphenyl]-3-yl)boronic acid (19 _A)	17
1.3.16	Synthesis of (2-iodo-5-methoxy-3'-(trifluoromethoxy)-[1,1'-biphenyl]-3-yl) boronic acid (20_{A})	18
1.3.17	Synthesis of (2-iodo-5-methoxy-4'-phenoxy-[1,1'-biphenyl]-3-yl)boronic acid (21 _A)	18
1.3.18	Synthesis of (3-(benzo[d][1,3]dioxol-5-yl)-2-iodo-5-methoxyphenyl) boronic acid (22_A)	19
1.3.19	Synthesis of (3-(2,3-dihydrobenzofuran-5-yl)-2-iodo-5-methoxyphenyl) boronic acid (23_A)	19

Page

1.3.20	Synthesis of (2-iodo-5-methoxy-3-(6-methoxypyridin-3-yl)phenyl) boronic acid (24_{A})	20
1.4	General Procedure for Organocatalytic Amidations	20
1.4.1	Synthesis of tert-butyl (2-phenylacetyl)glycinate (26)	21
1.4.2	Synthesis of N-benzyl-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetamide (27)	21
1.4.3	Synthesis of benzyl (S)-(1-(benzylamino)-1-oxopropan-2-yl)carbamate (28)	22
1.4.4	Synthesis of N-(2-(benzylamino)-2-oxoethyl)octanamide (29)	22
1.4.5	Synthesis of N-benzyl-2-(phenylamino)acetamide (30)	23
1.4.6	Synthesis of (S)-N-benzyl-2-(4-isobutylphenyl)propanamide (31)	23
1.5	NMR Spectra for New Compounds.	24
1.5.1	¹ H-NMR of 5-fluoro-2,3-diiodo-1,1'-biphenyl (11) in CDCl ₃ at 25 °C	24
1.5.2	¹³ C-NMR of 5-fluoro-2,3-diiodo-1,1'-biphenyl (11) in CDCl ₃ at 25 °C	25
1.5.3	¹ H-NMR of 2,3-diiodo-4'-isopropyl-1,1'-biphenyl (15) in CDCl ₃ at 25 °C	26
1.5.4	13 C-NMR of 2,3-diiodo-4'-isopropyl-1,1'-biphenyl (15) in CDCl ₃ at 25 °C	27
1.5.5	¹ H-NMR of 2,3-diiodo-3',5-dimethoxy-1,1'-biphenyl (16) in CDCl ₃ at 25 °C	28
1.5.6	¹³ C-NMR of 2,3-diiodo-3',5-dimethoxy-1,1'-biphenyl (16) in CDCl ₃ at 25 °C	29
1.5.7	¹ H-NMR of 3'-fluoro-2,3-diiodo-4',5-dimethoxy-1,1'-biphenyl (17) in CDCl ₃ at 25 °C	30
1.5.8	¹³ C-NMR of 3'-fluoro-2,3-diiodo-4',5-dimethoxy-1,1'-biphenyl (17) in CDCl ₃ at 25 °C	31
1.5.9	1 H-NMR of 2,3-diiodo-5-methoxy-4'-(methoxymethyl)-1,1'-biphenyl ($f 18$) in CDCl $_3$ at 25 °C	32
1.5.10	13 C–NMR of 2,3-diiodo-5-methoxy-4'-(methoxymethyl)-1,1'-biphenyl (18) in CDCl ₃ at 25 °C	33
1.5.11	¹ H-NMR of 2,3-diiodo-4',5-dimethoxy-1,1'-biphenyl (19) in CDCl ₃ at 25 °C	34
1.5.12	¹³ C-NMR of 2,3-diiodo-4',5-dimethoxy-1,1'-biphenyl (19) in CDCl ₃ at 25 °C	35
1.5.13	1 H-NMR of 2,3-diiodo-5-methoxy-3'-(trifluoromethoxy)-1,1'-biphenyl ($f 20$) in CDCl3 at 25 °C	36
1.5.14	¹³ C-NMR of 2,3-diiodo-5-methoxy-3'-(trifluoromethoxy)-1,1'-biphenyl (20) in CDCl ₃ at 25 °C	37
1.5.15	¹ H-NMR of 2,3-diiodo-5-methoxy-4'-phenoxy-1,1'-biphenyl (21) in CDCl ₃ at 25 °C	38
1.5.16	13 C-NMR of 2,3-diiodo-5-methoxy-4'-phenoxy-1,1'-biphenyl (21) in CDCl $_3$ at 25 °C	39
1.5.17	¹ H-NMR of 5-(2,3-diiodo-5-methoxyphenyl)benzo[d][1,3]dioxole (22) in CDCl ₃ at 25 °C	40
1.5.18	13 C-NMR of 5-(2,3-diiodo-5-methoxyphenyl)benzo[d][1,3]dioxole (22) in CDCl ₃ at 25 °C	41
1.5.19	1 H-NMR of 5-(2,3-diiodo-5-methoxyphenyl)-2,3-dihydrobenzofuran ($f 23$) in CDCl $_3$ at 25 °C	42
1.5.20	13 C-NMR of 5-(2,3-diiodo-5-methoxyphenyl)-2,3-dihydrobenzofuran (23) in CDCl ₃ at 25 °C	43
1.5.21	¹ H-NMR of 5-(2,3-diiodo-5-methoxyphenyl)-2-methoxypyridine (24) in CDCl ₃ at 25 °C	44
1.5.22	13 C-NMR of 5-(2,3-diiodo-5-methoxyphenyl)-2-methoxypyridine (24) in CDCl ₃ at 25 °C	45
1.5.23	¹ H-NMR of (2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (5 _A) in d ⁶⁻ DMSO at 25 °C	46
1.5.24	¹³ C–NMR of (2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (5 _A) in d ⁶⁻ DMSO at 25 °C	47
1.5.25	¹¹ B-NMR of (2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (5_A) in d ⁶ -acetone at 25 °C	48
1.5.26	¹ H-NMR of (2-iodo-4'-isopropyl-[1,1'-biphenyl]-3-yl)boronic acid (6 _A) in d ⁶⁻ DMSO at 25 °C	49
1.5.27	¹³ C–NMR of (2-iodo-4'-isopropyl-[1,1'-biphenyl]-3-yl)boronic acid (6 _A) in d ⁶⁻ DMSO at 25 °C	50
1.5.28	¹¹ B-NMR of (2-iodo-4'-isopropyl-[1,1'-biphenyl]-3-yl)boronic acid (6 _A) in d ⁶ -acetone at 25 °C	51
1.5.29	¹ H-NMR of (3'-fluoro-2-iodo-4'-methoxy-[1,1'-biphenyl]-3-yl)boronic acid (7_A) in d ⁶⁻ DMSO at 25 °C	252
1.5.30	¹³ C–NMR of (3'-fluoro-2-iodo-4'-methoxy-[1,1'-biphenyl]-3-yl)boronic acid (7 _A) in d ⁶⁻ DMSO at 25 °	С53
1.5.31	¹¹ B-NMR of (3'-fluoro-2-iodo-4'-methoxy-[1,1'-biphenyl]-3-yl)boronic acid (7 _A) in d ⁶ -acetone at 25 54	5 °C
1.5.32	¹ H-NMR of (2-iodo-5-methyl-[1.1'-biphenyl]-3-yl)boronic acid (8 _A) in d ⁶⁻ DMSO at 25 °C	55
1.5.33	^{13}C –NMR of (2-iodo-5-methyl-[1,1'-biphenyl]-3-yl)boronic acid (8_{A}) in d ⁶⁻ DMSO at 25 °C	56
1.5.34	¹¹ B-NMR of (2-iodo-5-methyl-[1,1'-biphenyl]-3-yl)boronic acid (8 _A) in d ⁶ -acetone at 25 °C	57
1.5.35	¹ H-NMR of (2-iodo-4'-isopropyl-5-methyl-[1,1'-biphenyl]-3-vl)boronic acid (9_A) in d ⁶⁻ DMSO at 25 of	C58
1.5.36	$^{13}C-NMR$ of (2-iodo-4'-isopropyl-5-methyl-[1,1'-biphenyl]-3-vl)boronic acid (9_{A}) in d ⁶ DMSO at 25 °	<i>C.</i> 59
1.5.37	¹¹ B-NMR of (2-iodo-4'-isopropyl-5-methyl-[1,1'-biphenyl]-3-yl)boronic acid (9_A) in d ⁶ -acetone at 2:	5°C
1.5.38	¹ H-NMR of (3'-fluoro-2-iodo-4'-methoxy-5-methyl-[1,1'-biphenyl]-3-yl) boronic acid (10_A) in d ⁶⁻ DM at 25 °C.	ISO

1.5.39	¹³ C-NMR of (3'-fluoro-2-iodo-4'-methoxy-5-methyl-[1,1'-biphenyl]-3-yl) boronic acid (10_A) in d ⁶⁻ DMSO
1 5 40	dt 25 %
1.5.40	¹¹ B-INMR of $(3 - fluoro - 2 - load - 4 - methoxy - 5 - methyl - [1, 1 - biphenyl] - 3 - yl) boronic acia (10A) in ao-$
1 = 41	acetone at 25 °C
1.5.41	¹ H-NMR of (5-fluoro-2-loao-[1,1-bipnenyi]-3-yi)boronic acia (11 _A) in a° DMSO at 25 °C
1.5.42	13 C-NMR of (5-fluoro-2-iodo-[1,1-biphenyl]-3-yl jboronic acid (11 _A) in d° DMSO at 25 °C
1.5.43	¹¹ B-NMR of (5-fluoro-2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (11_A) in d ⁶ -acetone at 25 °C
1.5.44	¹ H-NMR of (5-chloro-2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (12_A) in d ⁶ -DMSO at 25 °C.
1.5.45	¹³ C–NMR of (5-chloro-2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (12_A) in d ⁶⁻ DMSO at 25 °C69
1.5.46	¹¹ B-NMR of (5-chloro-2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (12_A) in d ⁶ -acetone at 25 °C70
1.5.47	¹ H-NMR of (5-bromo-2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (13_{A}) in d ⁶⁻ DMSO at 25 °C
1.5.48	¹³ C–NMR of (5-bromo-2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (13_{A}) in d ⁶⁻ DMSO at 25 °C
1.5.49	¹¹ B-NMR of (5-bromo-2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (13_A) in d ⁶ -acetone at 25 °C73
1.5.50	¹ H-NMR of (2-iodo-5-methoxy-[1,1'-biphenyl]-3-yl)boronic acid (14_A) in d ⁶⁻ DMSO at 25 °C74
1.5.51	¹³ C–NMR of (2-iodo-5-methoxy-[1,1'-biphenyl]-3-yl)boronic acid (14 _A) in d ⁶⁻ DMSO at 25 °C75
1.5.52	¹¹ B-NMR of (2-iodo-5-methoxy-[1,1'-biphenyl]-3-yl)boronic acid (14 _A) in d ⁶ -acetone at 25 °C76
1.5.53	¹ H-NMR of (2-iodo-4'-isopropyl-5-methoxy-[1,1'-biphenyl]-3-yl)boronic acid (15 _A) in d ⁶⁻ DMSO at 25 °C. 77
1.5.54	¹³ C–NMR of (2-iodo-4'-isopropyl-5-methoxy-[1,1'-biphenyl]-3-yl)boronic acid (15 _A) in d ⁶⁻ DMSO at 25 °C
1.5.55	¹¹ B-NMR of (2-iodo-4'-isopropyl-5-methoxy-[1,1'-biphenyl]-3-yl)boronic acid (15 _A) in d ⁶ -acetone at 25 °C79
1.5.56	¹ H-NMR of (2-iodo-3',5-dimethoxy-[1,1'-biphenyl]-3-yl)boronic acid (16_A) in d ⁶⁻ DMSO at 25 °C80
1.5.57	¹³ C–NMR of (2-iodo-3',5-dimethoxy-[1,1'-biphenyl]-3-yl)boronic acid (16 _A) in d ⁶⁻ DMSO at 25 °C81
1.5.58	¹¹ B-NMR of (2-iodo-3'.5-dimethoxy-[1.1'-biphenvl]-3-vl)boronic acid (16_A) in d ⁶ -acetone at 25 °C82
1.5.59	¹ H-NMR of (3'-fluoro-2-iodo-4',5-dimethoxy-[1,1'-biphenyl]-3-yl)boronic acid (17 _A) in d ⁶⁻ DMSO at 25
	٥٢
1.4.60	¹³ C–NMR of (3'-fluoro-2-iodo-4',5-dimethoxy-[1,1'-biphenyl]-3-yl)boronic acid (17 _A) in d ⁶⁻ DMSO at 25 ^o C
1.5.61	¹¹ B-NMR of (3'-fluoro-2-iodo-4',5-dimethoxy-[1,1'-biphenyl]-3-yl)boronic acid (17_{A}) in d ⁶ -acetone at 25 °C
1.5.62	¹ H-NMR of (2-iodo-5-methoxy-4'-(methoxymethyl)-[1,1'-biphenyl]-3-yl) boronic acid (18 _A) in d ⁶⁻ DMSO at 25 °C
1.5.63	¹³ C–NMR of (2-iodo-5-methoxy-4'-(methoxymethyl)-[1,1'-biphenyl]-3-yl) boronic acid (18_A) in d ⁶⁻ DMSO at 25 °C.
1.5.64	¹¹ B-NMR of (2-iodo-5-methoxy-4'-(methoxymethyl)-[1,1'-biphenyl]-3-yl) boronic acid (18 _A) in d ⁶ - acetone at 25 °C
1565	¹ H-NMR of (2-iodo-4' 5-dimethoxy-[1 1'-binheny]]-3-y])horonic acid (19) in d ⁶ DMSO at 25 °C 89
1566	13(-NMR of (2-iodo-4' 5-dimethoxy-[1 1'-hinhenvl]-3-vl)horonic acid (10.) in d6DMSO at 25 °C 90
1567	112 NMR of (2 iodo 4',5 dimethoxy [1,1' biphenyl] 3 yl)boronic acid (10 ,) in de acatona at 25 eC 91
1.5.68	¹ H-NMR of (2-iodo-5-methoxy-3'-(trifluoromethoxy)-[1,1'-biphenyl]-3-yl)boronic acid (20 _A) in d ⁶ -DMSO
	<i>at 25 °C</i>
1.5.69	¹³ C–NMR of (2-iodo-5-methoxy-3'-(trifluoromethoxy)-[1,1'-biphenyl]-3-yl)boronic acid (20 _A) in d ⁶⁻ DMSO at 25 °C
1.5.70	¹¹ B-NMR of (2-iodo-5-methoxy-3'-(trifluoromethoxy)-[1,1'-biphenyl]-3-yl) boronic acid (20 _A) in d ⁶ - acetone at 25 °C.
1.5.71	¹ H-NMR of (2-iodo-5-methoxy-4'-phenoxy-[1,1'-biphenyl]-3-yl)boronic acid (21 _A) in d ⁶⁻ DMSO at 25 °C
1.5.72	¹³ C-NMR of (2-iodo-5-methoxy-4'-phenoxy-[1,1'-biphenyl]-3-yl)boronic acid (21_A) in d ⁶⁻ DMSO at 25 °C.
1.5.73	¹¹ B-NMR of (2-iodo-5-methoxy-4'-phenoxy-[1,1'-biphenyl]-3-yl)boronic acid (21_{A}) in d ⁶ -acetone at 25
1.5.74	¹ H-NMR of (3-(benzo[d][1,3]dioxol-5-yl)-2-iodo-5-methoxyphenyl) boronic acid (22 _A) in d ⁶⁻ DMSO at 25
	-ر

1.5.75	¹³ C–NMR of (3-(benzo[d][1,3]dioxol-5-yl)-2-iodo-5-methoxyphenyl) boronic acid ($f 22_Af)$ in	d ⁶⁻ DMSO at
	25 °C	99
1.5.76	¹¹ B-NMR of (3-(benzo[d][1,3]dioxol-5-yl)-2-iodo-5-methoxyphenyl) boronic acid (22_A) in	d ⁶ -acetone at
	25 °C	
1.5.77	¹ H-NMR of (3-(2,3-dihydrobenzofuran-5-yl)-2-iodo-5-methoxyphenyl) boronic acid (23_{A})	in d ⁶⁻ DMSO at
	25 °C	
1.5.78	¹³ C–NMR of (3-(2,3-dihydrobenzofuran-5-yl)-2-iodo-5-methoxyphenyl) boronic acid (23 _A at 25 °C) in d ⁶⁻ DMSO 102
1.5.79	¹¹ B-NMR of (3-(2,3-dihydrobenzofuran-5-yl)-2-iodo-5-methoxyphenyl) boronic acid (23_A) in d ⁶ -acetone
	at 25 °C	
1.5.80	¹ H-NMR of 2-iodo-5-methoxy-3-(6-methoxypyridin-3-yl)phenyl) boronic acid (24_{A}) in d ⁶⁻ l	DMSO at 25 °C.
1.5.81	13 C–NMR of 2-iodo-5-methoxy-3-(6-methoxypyridin-3-yl)phenyl) boronic acid (24_{A}) in d 6	DMSO at 25
	°C	
1.5.80	1 H-NMR of tert-butyl (2-phenylacetyl)glycinate ($f 26$) in CDCl3 at 25 °C	
1.4.81	13 C–NMR of tert-butyl (2-phenylacetyl)glycinate (26) in CDCl $_3$ at 25 °C	
1.5.80	¹ H-NMR of benzyl (S)-(1-(benzylamino)-1-oxopropan-2-yl)carbamate (28) in d ⁶⁻ DMSO at	25 °C 108
1.5.81	13 C–NMR of benzyl (S)-(1-(benzylamino)-1-oxopropan-2-yl)carbamate ($f 28$) in d 6 -DMSO a	t 25 °C 109
1.5.80	¹ H-NMR of N-(2-(benzylamino)-2-oxoethyl)octanamide (29) in CDCl ₃ at 25 °C	110
1.5.81	¹³ C–NMR of N-(2-(benzylamino)-2-oxoethyl)octanamide (29) in CDCl ₃ at 25 °C	
1.5	X-ray of new compounds	
1.5.1	X-ray data of (2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (5 _A)	
1.5.2	X-ray data of (2-iodo-5-methoxy-[1,1'-biphenyl]-3-yl)boronic acid (14 _A)	
1.5.2	X-ray data of (2-iodo-4',5-dimethoxy-[1,1'-biphenyl]-3-yl)boronic acid (19 _A)	
1.5.2	X-ray data of (2-iodo-5-methoxy-4'-phenoxy-[1,1'-biphenyl]-3-yl)boronic acid (21_{A})	147
1.6	Antibacterial activity	

1. Experimental Details and Compound Data.

1.1 General Information

A ll commercial reagents and chromatography solvents were used as obtained unless otherwise stated. Ethanol, toluene, ethyl acetate, hexanes, anhydrous sodium sulfate (Na₂SO₄, BDH). Anhydrous solvents were distilled over appropriate drying agents prior to use. Analytical thin layer chromatography (TLC) was performed on Merck silica gel 60 F₂₅₄. Merck Silica gel 60 (0.063 - 0.2 mm) was used for column chromatography. Visualization of TLC was accomplished with UV light (254 nm). NMR spectra were recorded on a Bruker-Avance 400 MHz spectrometer. The residual solvent protons (¹H) or the solvent carbon (¹³C) were used as internal standards. ¹H-NMR data are presented as follows: chemical shift in ppm (δ) downfield from trimethylsilane (multiplicity, integration, coupling constant). The following abbreviations are used in reporting NMR data: s, singlet; bs, broad singlet; d, doublet; t, triplet; q, quartet; dq, doublet of quartets; dd, doublet of doublets; m, mutiplet.. High resolution mass spectra were recorded using Chemical Ionization (CI) and Electrospray ionization (ESI) techniques.

1.2 General procedure for the synthesis of 5-substituted-2,3diiodobiphenyls

A flame dried round bottom flask was charged with arylboronic acid (0.72 mmol, 1.1 equiv.), 5-substituted-1,2,3-triiodobenzene (0.66 mmol, 1 equiv.), tetrakis-(triphenylphosphine) palladium (12% mol), 4 mL toluene, 2M solution of potassium carbonate (1.4 ml) and ethanol (0.4 ml) under argon. The mixture was heated to 100 °C

for 12 h. The mixture was cooled down to room temperature. The aqueous layer was extracted with ethyl acetate (2 x 50 mL). The organic layers were combined and washed with brine, dried with Na₂SO₄, filtered and then evaporated under reduced pressure. The crude product was purified by flash chromatography to yield the pure desired product.

1.2.1 Synthesis of 2,3-diiodo-1,1'-biphenyl (5)

The title compound was prepared using the general procedure for regioselective Suzuki-Miyaura cross-coupling reaction and isolated as colorless oil (**93**% yields). The spectroscopic data for this compound are matched our previous report by Al-Zoubi, R. M.; Al-Jammal, W. K.; El-Khateeb, M. Y.; McDonald, R. *Eur. J. Org. Chem.* **2015**, 3374.

1.2.2 Synthesis of 2,3-diiodo-4'-isopropyl-1,1'-biphenyl (6)

The title compound was prepared using the general procedure for regioselective Suzuki-Miyaura cross-coupling reaction and isolated as colorless oil (**83%** yields). The spectroscopic data for this compound are matched our previous report by Al-Zoubi, R. M.; Al-

Jammal, W. K.; El-Khateeb, M. Y.; McDonald, R. Eur. J. Org. Chem. 2015, 3374.

1.2.3 Synthesis of 3'-fluoro-2,3-diiodo-4'-methoxy-1,1'-biphenyl (7)

The title compound was prepared using the general procedure for regioselective Suzuki-Miyaura cross-coupling reaction and isolated as colorless oil (82% yields). The spectroscopic data for this

compound are matched our previous report by Al-Zoubi, R. M.; Al-Jammal, W. K.; El-Khateeb, M. Y.; McDonald, R. Eur. J. Org. Chem. 2015, 3374.

1.2.4 Synthesis of 3,4-Diiodo-5-phenyltoluene (8)

The title compound was prepared using the general procedure for regioselective Suzuki-Miyaura cross-coupling reaction and isolated as white solid (80% yields). The spectroscopic data for this compound are matched the previous report by F. Yang, K.-G. Ji, H.-T. Zhu, A. Shaukat, X.-Y. Liu, Y.-M. Liang, Chem. - Eur. J. 2011, 17, 4986-4990.

1.2.5 Synthesis of 2,3-diiodo-4'-isopropyl-5-methyl-1,1'-biphenyl (9)

The title compound was prepared using the general procedure for regioselective Suzuki-Miyaura cross-coupling reaction and isolated as colorless oil (82% yields). The spectroscopic data for this compound are matched our

previous report by Al-Zoubi, R. M.; Al-Jammal, W. K.; El-Khateeb, M. Y.; McDonald, R. Eur. J. Org. Chem. 2015, 3374.

1.2.6 Synthesis 3'-fluoro-2,3-diiodo-4'-methoxy-5-methyl-1,1'-biphenyl of (10)

The title compound was prepared using the general procedure for regioselective Suzuki-Miyaura cross-coupling reaction and isolated as white solid (91% yields). The spectroscopic data for

this compound are matched our previous report by Al-Zoubi, R. M.; Al-Jammal, W. K.; El-Khateeb, M. Y.; McDonald, R. Eur. J. Org. Chem. 2015, 3374.

1.2.7 Synthesis of 5-fluoro-2,3-diiodo-1,1'-biphenyl (11)

The title compound was prepared using the general procedure for regioselective Suzuki-Miyaura cross-coupling reaction and isolated as colorless oil (52% yields). IR (cast film, cm⁻¹) 3012, 3008, 2975, 1607, 1589, 1358, 1272, 958, 745. δ_H (400MHz, *d*-CDCl₃) δ: 7.63 (dd, 1H, *J* = 2.8 Hz, *J* = 7.8 Hz), 7.35-7.45 (m, 3H), 7.20-7.24 (m, 2H), 6.99 (dd, 1H, I = 2.8 Hz, I = 8.6 Hz). Sc (100 MHz, d-CDCl₃) δ: 163.1, 160.6, 150.7, 150.6, 145.9, 128.8, 128.4, 128.2, 125.9, 125.7, 116.6, 116.4, 109.9, 109.9, 106.9, 106.8. **HRMS** (ESI) m/z for C₁₂H₈FI₂ [M+H]⁺: calcd. 424.8699; found, 424.8692.

1.2.8 Synthesis of 5-chloro-2.3-dijodo-1.1'-biphenyl (12)

The title compound was prepared using the general procedure for regioselective Suzuki-Miyaura cross-coupling reaction and isolated as colorless oil (81% yields). The spectroscopic data for this compound are matched our previous report by Al-Zoubi, R. M.; Al-Jammal, W. K.; El-Khateeb, M. Y.; McDonald, R. Eur. J. Org. Chem. 2015, 3374.

Synthesis of 5-bromo-2,3-diiodo-1,1'-biphenyl (13) 1.2.9

The title compound was prepared using the general procedure for regioselective Suzuki-Miyaura cross-coupling reaction and isolated as colorless oil (91% yields). The spectroscopic data for this

compound are matched our previous report by Al-Zoubi, R. M.; Al-Jammal, W. K.; El-Khateeb, M. Y.; McDonald, R. Eur. J. Org. Chem. 2015, 3374.

1.2.10 Synthesis of 2,3-diiodo-5-methoxy-1,1'-biphenyl (14)

The title compound was prepared using the general procedure for regioselective Suzuki-Miyaura cross-coupling reaction and isolated as colorless oil (**78%** yields). The spectroscopic data for this

compound are matched our previous report by Al-Zoubi, R. M.; Al-Jammal, W. K.; El-Khateeb, M. Y.; McDonald, R. *Eur. J. Org. Chem.* **2015**, 3374.

1.2.11 Synthesis of 2,3-diiodo-4'-isopropyl-1,1'-biphenyl (15)

The title compound was prepared using the general procedure for regioselective Suzuki-Miyaura cross-coupling reaction and isolated as colorless oil (**62%** yields). **IR** (cast film, cm⁻¹) 3042, 3016, 2975, 1598, 1587, 1281, 1113, 832. δ_H (400 MHz, *d*-

CDCl₃) δ : 7.45 (d, 1H, *J* = 2.9 Hz), 7.25 (d, 2H, *J* = 8.0 Hz), 7.17 (d, 2H, *J* = 8.2 Hz), 6.80 (d, 1H, *J* = 2.9 Hz), 2.98 (sept, 1H, *J* = 6.9 Hz), 1.30 (d, 6H, *J* = 6.9 Hz . δ_{c} (100 MHz, *d*-CDCl₃) δ : 159.6, 149.9, 148.7, 144.2, 128.8, 126.1, 124.5, 115.6, 110.1, 101.9, 55.8, 33.9, 24.1. **HRMS** (ESI) m/z for C₁₆H₁₇I₂O [M+H]⁺: calcd. Exact 478.9369; found, 478.9358.

1.2.12 Synthesis of 2,3-diiodo-3',5-dimethoxy-1,1'-biphenyl (16)

The title ompound was prepared using the general procedure for regioselective Suzuki-Miyaura cross-coupling reaction and isolated as colorless oil (**52%** yields). **IR** (cast film, cm⁻¹) 3088,

3057, 2995, 1625, 1607, 1588, 1345, 1240, 1285, 1045, 768. $\delta_{\rm H}$ (400 MHz, *d*-CDCl₃) δ : 7.46 (d, 1H, *J* = 2.9 Hz), 7.31 (dd, 1H, *J* = 7.8 Hz, *J* = 8.0 Hz), 6.91 (dd, 1H, *J* = 2.4 Hz, *J* = 8.2 Hz), 6.75-6.88 (m, 3H), 3.84 (s, 3H), 3.78 (s, 3H). $\delta_{\rm C}$ (100 MHz, *d*-CDCl₃) δ : 159.6,

159.1, 149.7, 147.9, 129.2, 124.6, 121.3, 115.4, 114.6, 113.6, 110.2, 101.4, 55.8, 55.5. **HRMS** (ESI) m/z for $C_{14}H_{13}I_2O_2 [M+H]^+$: calcd. 466.9005; found, 466.8994.

1.2.13 Synthesis of 3'-fluoro-2,3-diiodo-4',5-dimethoxy-1,1'-biphenyl (17)

The title compound was prepared using the general procedure for regioselective Suzuki-Miyaura cross-coupling reaction and isolated as a white solid (32% yield). IR (cast film, cm⁻¹) 3079, 3045, 2994, 1621, 1612, 1582, 1317, 1243, 1120, 1086, 995, 817. δ_H (400 MHz, d- $CDCl_3$) δ :7.45 (d, 1H, J = 2.9 Hz), 6.90-7.10 (m, 3H), 6.77 (d, 1H, J = 2.9 Hz), 3.94 (s, 3H), 3.78 (s, 3H). $\delta_{\rm C}$ (100 MHz, d-CDCl₃) δ : 159.6, 152.8, 150.4, 148.3, 147.6, 147.5, 139.6, 139.6, 124.9, 124.9, 124.6, 117.2, 116.9, 115.8, 112.8, 112.8, 110.2, 101.9, 56.4, 55.8. **M.p**: 114-116 °C. **HRMS** (ESI) m/z for C₁₄H₁₂FI₂O₂ [M+H]⁺: calcd. 484.8911; found, 484.8901.

1.2.14 Synthesis of 2.3-diiodo-5-methoxy-4'-(methoxymethyl)-1.1'-biphenyl (18)

The title compound was prepared using the general procedure for regioselective Suzuki-Miyaura cross-coupling reaction and isolated as a white solid (57% yields). IR (cast

film, cm⁻¹) 3011, 3009, 2987, 1608, 1542, 1448, 1266, 1210, 958, 752. δ_H (400 MHz, d- $CDCl_3$) δ : 7.45 (d, 1H, J = 2.9Hz), 7.38 (d, 2H, J = 8.0Hz), 7.23 (d, 2H, J = 8.1Hz), 6.78 (d, 1H, I = 2.9Hz), 4.52 (s, 2H), 3.77 (s, 3H), 3.44 (s, 3H). δ_{C} (100 MHz, d-CDCl₃) δ : 159.6, 149.6, 146.0, 138.1, 128.9, 127.4, 124.6, 115.6, 110.2, 101.6, 74.6, 58.5, 55.8. M.p: 71-75 °C. **HRMS** (ESI) m/z for C₁₅H₁₅I₂O₂ [M+H]⁺: calcd. 480.9161; found, 480.9155.

1.2.15 Synthesis of 2,3-diiodo-4',5-dimethoxy-1,1'-biphenyl (19)

The title compound was prepared using the general procedure for regioselective Suzuki-Miyaura cross-coupling reaction and isolated as a white solid (**52%** yields). **IR** (cast

film, cm⁻¹) 3014, 3004, 2985, 2893, 1607, 1594, 1542, 1278, 1240, 1146, 976, 714. $\delta_{\rm H}$ (400 MHz, *d*-CDCl₃) δ : 7.42 (d, 1H, *J* = 2.9 Hz), 7.16 (d, 2H, *J* = 8.6 Hz), 7.91 (d, 2H, *J* = 8.7 Hz), 6.77 (d, 1H, *J* = 2.8 Hz), 3.83 (s, 3H), 3.74 (s, 3H). $\delta_{\rm C}$ (100 MHz, *d*-CDCl₃) δ : 159.5, 159.3, 149.5, 139.3, 130.1, 124.3, 115.7, 113.3, 110.0, 102.3, 55.7, 55.4. **M.p**: 106-108°C. **HRMS** (ESI) m/z for C₁₄H₁₃I₂O₂ [M+H]⁺: calcd. Exact 466.9005; found, 466.8998.

1.2.16 Synthesis of 2,3-diiodo-5-methoxy-3'-(trifluoromethoxy)-1,1'-biphenyl (20)

The title compound was prepared using the general procedure for regioselective Suzuki-Miyaura cross-coupling reaction and isolated as colorless oil (**50%**

yields). **IR** (cast film, cm⁻¹) 3077, 3012, 2998, 1622, 1601, 1473, 1314, 1245, 1276, 945, 844. $\delta_{\rm H}$ (400 MHz, *d*-CDCl₃) δ : 7.48 (d, 1H, *J* = 2.9Hz),7.43 (dd, 1H, *J* = 8.0 Hz, *J* = 7.9 Hz), 7.23 (d, 1H, *J* = 8.2 Hz), 7.17 (d, 1H, *J* = 7.7 Hz), 7.13 (s, 1H), 6.79 (d, 1H, *J* = 2.9Hz), 3.79 (s, 3H). $\delta_{\rm C}$ (100 MHz, *d*-CDCl₃) δ : 159.6, 148.8, 148.2, 148.1, 129.6, 127.4, 124.9, 1245, 121.9, 121.8, 120.5, 119.3, 116.8, 115.6, 110.4, 101.2, 55.8. **HRMS** (ESI) m/z for C₁₄H₁₀F₃I₂O₂ [M+H]⁺: calcd. 520.8722; found, 520.8719.

1.2.17 Synthesis of 2,3-diiodo-5-methoxy-4'-phenoxy-1,1'-biphenyl (21)

The title compound was prepared using the general procedure for regioselective Suzuki-Miyaura cross-coupling reaction and isolated as a white solid (**47%**

yields). **IR** (cast film, cm⁻¹) 3124, 3055, 2996, 1644, 1646, 1541, 1347, 1247, 1223, 1104, 847. δ_H (400 MHz, *d*-CDCl₃) δ: 7.46 (d, 1H, *J* = 2.9 Hz), 7.38 (dd, 2H, *J* = 8.3 Hz, *J* = 7.5 Hz), 7.21 (d, 2H, *J* = 8.6 Hz), 7.14 (dd, 1H, *J* = 7.3 Hz , *J* = 7.4 Hz), 7.09 (d, 2H, *J* = 8.2 Hz), 7.02 (d, 2H, *J* = 8.6 Hz), 6.82 (d, 1H, *J* = 2.9 Hz), 3.79 (s, 3H). δ_C (100 MHz, *d*-CDCl₃) δ: 159.6, 157.3, 156.9, 149.3, 141.6, 130.4, 129.9, 124.5, 123.8, 119.5, 117.9, 115.7, 110.1, 102.1, 55.8. **M.p**: 94-96 °C. **HRMS** (ESI) m/z for C₁₉H₁₅I₂O₂ [M+H]⁺: calcd. 528.9161; found, 528.9157.

1.2.18 Synthesis of 5-(2,3-diiodo-5-methoxyphenyl)benzo[d][1,3]dioxole (22)

The title compound was prepared using the general procedure for regioselective Suzuki-Miyaura cross-coupling reaction and isolated as a white solid (**40%** vields). **IR** (cast film. cm⁻¹) 3012.

2978, 1604, 1547, 1533, 1301, 1244, 1239, 1147, 1007, 897, 748, 624. **δ**_H (400 MHz, *d*-CDCl₃) δ: 7.44 (d, 1H, *J* = 2.9 Hz), 6.83 (d, 1H, *J* = 8.0 Hz), 6.78 (d, 1H, *J* = 2.9 Hz), 6.72 (s, 1H), 6.68 (dd, 1H, *J* = 1.6 Hz, *J* = 7.9 Hz), 6.02 (s, 2H), 3.77 (s, 3H). **δ**_C (100 MHz, *d*-CDCl₃) δ: 159.6, 149.4, 147.4, 147.2, 140.8, 124.5, 122.5, 115.8, 110.0, 109.8, 107.9, 102.2, 101.4, 55.8. **M.p**: 123-125 °C. **HRMS** (ESI) m/z for C₁₄H₁₁I₂O₃ [M+H]⁺: calcd. 480.8798; found, 480.8793.

1.2.19 Synthesis of 5-(2,3-diiodo-5-methoxyphenyl)-2,3-dihydrobenzofuran (23)

The title compound was prepared using the general procedure for regioselective Suzuki-Miyaura cross-coupling reaction and isolated as a white solid (**30%** yields). **IR** (cast film, cm⁻¹) 3095,

3041, 3012, 2995, 1611, 1599, 1370, 1207, 1176, 1132, 892, 773. δ_{H} (400 MHz, *d*-CDCl₃) δ : 7.43 (d, 1H, *J* = 2.9Hz), 7.07 (s, 1H), 6.98 (d, 1H, *J* = 8.4Hz), 6.77-6.85 (m, 2H), 4.63 (t, 2H, *J* = 8.7Hz), 3.77 (s, 3H), 3.25 (t, 2H, *J* = 8.7Hz). δ_{C} (100 MHz, *d*-CDCl₃) δ : 159.9, 159.6, 149.9, 139.4, 128.9, 126.7, 125.6, 124.3, 115.7, 109.9, 108.7, 102.5, 71.6, 55.7, 29.8. **M.p**: 123-126 °C. **HRMS** (ESI) m/z for C₁₅H₁₃I₂O₂ [M+H]⁺: calcd. 478.9005; found, 478.8995.

1.2.20 Synthesis of 5-(2,3-diiodo-5-methoxyphenyl)-2-methoxypyridine (24)

The title compound was prepared using the general procedure for regioselective Suzuki-Miyaura cross-coupling reaction and isolated as colorless oil (**52%** yields). **IR** (cast film, cm⁻¹) 3112,

3075, 3012, 1625, 1593, 1432, 1328, 1195, 1109, 943, 814. $\delta_{\rm H}$ (400 MHz, *d*-CDCl₃) δ : 8.05 (d, 1H, *J* = 2.2Hz), 7.49 (dd, 1H, *J* = 2.4 Hz, *J* = 8.5 Hz), 7.45 (d, 1H, *J* = 2.8Hz), 6.78 (m, 2H), 3.98 (s, 3H), 3.77 (s, 3H). $\delta_{\rm C}$ (100 MHz, *d*-CDCl₃) δ : 163.7, 159.7, 146.4, 146.2, 139.5, 135.7, 124.8, 116.0, 110.3, 110.0, 102.4, 55.8, 53.7. **HRMS** (ESI) m/z for C₁₃H₁₂I₂NO₂ [M+H]⁺: calcd. 467.8957; found, 467.8944.

1.2.21 Synthesis of methyl 5,6-diiodo-4'-isopropyl-[1,1'-biphenyl]-3-carboxylate (25)

The title compound was prepared using the general procedure for regioselective Suzuki-Miyaura cross-coupling reaction and isolated as white solid (**77**% yields). The

spectroscopic data for this compound are matched our previous report by Al-Zoubi, R. M.; Al-Jammal, W. K.; El-Khateeb, M. Y.; McDonald, R. *Eur. J. Org. Chem.* **2015**, 3374.

1.3 General procedure for MIE reaction of 2,3-diiodo-5-substituted biphenyl derivatives and trimethylborate

To a solution of 2,3-diiodo-5-substituted biphenyl compound (1.0 mmol) in 20.0 mL anhyd. THF at -78 °C was added dropwize *iso*propyl magnesium chloride (2M in THF, 1.10 mmol, 1.10 equiv.). The mixture was stirred at that temperature for 2 h and then, trimethylborate (3.0 equiv.) was added. The solution was slowly warmed up to room temperature and stirred overnight. Saturated NH₄Cl was added and the resulting mixture was stirred 30 min at room temperature. The aqueous layer was extracted with Et₂O (2 x 50 mL). Organic layers were combined, filtered and then concentrated under reduced pressure using a rotary evaporator. A 20 mL diethylether was added and then extracted twice with 20 mL of aqueous NaOH (0.25M). Aqueous basic layers were combined; acidified using HCl solution (0.25M) and the resulting precipitate was then exctracted with 30 mL diethylether. Organic layers were combined, dried with anhyd. Sodium sulfate filtered and concentrated under reduced pressure using a rotary evaporator.

1.3.1 Synthesis of (2 -iodo-[1,1'-biphenyl]-3-yl) boronic acid (5_A)

HO.

The title compound was prepared using the general procedure for MIE reaction of 2,3-diiodo-5-substituted biphenyl derivatives with borate and isolated as a white solid (**60%** yields). **IR** (cast film, cm⁻¹) 3421, 3095, 3025, 2955, 1601, 1598, 1106, 954, 782. $\delta_{\rm H}$ (400MHz, d^{6-1}

DMSO) δ : 8.31 (s, 2H), 7.37-7.46 (m, 4H), 7.24-7.28 (m, 2H), 7.21 (dd, 1H, *J* = 1.5 Hz, *J* = 7.4 Hz), 7.12 (dd, 1H, *J* = 1.5 Hz, *J* = 7.2 Hz). δ_{C} (100 MHz, *d*⁶-DMSO) δ : 149.2, 145.5, 144.7, 131.4, 129.2, 129.1, 128.0, 127.5, 127.3, 102.6 . δ_{B} (128 MHz, *d*-acetone) δ : 29.2. **M.p**: 91-94 °C. **HRMS** (ESI) m/z for C₁₂H₁₁BIO₂ [M+H]⁺ : calcd. 324.9897; found, 324.9894.

1.3.2 Synthesis of (2-iodo-4'-isopropyl-[1,1'-biphenyl]-3-yl)boronic acid (6_A)

The title compound was prepared using the general procedure for MIE reaction of 2,3-diiodo-5-substituted biphenyl derivatives with borate and isolated as a white solid (**54%** yields). **IR** (cast film, cm⁻¹) 3346, 3045, 2998, 1612, 1597, 1179, 1078, 967, 862.

 $\delta_{\rm H}$ (400 MHz, *d*⁶-DMSO) δ: 8.27 (s, 2H), 7.33 (dd, 1H, *J* = 7.4 Hz, *J* = 7.3 Hz), 7.25 (d, 2H, *J* = 8.0 Hz), 7.12-7.15 (m, 3H), 7.05 (d, 1H, *J* = 7.0 Hz), 2.45 (sept, 1H, *J* = 6.4 Hz), 1.19 (d, 6H, *J* = 6.7 Hz) . $\delta_{\rm C}$ (100 MHz, *d*⁶-DMSO) δ: 149.5, 147.5, 145.5, 142.2, 131.2, 129.4, 129.1, 127.4, 125.9, 102.8, 33.2, 23.9. $\delta_{\rm B}$ (128MHz, *d*⁶-acetone) δ: 29.5. **M.p**: 114-116 °C. **HRMS** (ESI) m/z for C₁₅H₁₇BIO₂ [M+H]⁺: calcd. Exact 367.0366; found, 367.0358.

1.3.3 Synthesis of (3'-fluoro-2-iodo-4'-methoxy-[1,1'-biphenyl]-3-yl)boronic acid (7_A)

The title compound was prepared using the general procedure for MIE reaction of 2,3-diiodo-5-substituted biphenyl derivatives with borate and isolated as a white solid (**63%** yield). **IR** (cast film, cm⁻¹) 3396, 3097, 3017, 2986, 2934, 1619, 1597, 1547,

1352, 1247, 1101, 937, 782. **δ**_H (400 MHz, *d*⁶-DMSO) δ: 8.30 (s, 2H), 7.38 (t, 1H, *J* = 7.4 Hz), 7.20-7.26 (m, 2H), 7.13 (dd, 1H, *J* = 1.6 Hz, *J* = 7.2 Hz), 7.08 (dd, 1H, *J* = 2.0 Hz, *J* = *R*. *M*. *Al-Zoubi*, *W*. *K*. *Al-Jammal and R*. *McDonald*

12.2 Hz), 7.01(d, 1H, J = 8.3 Hz), 3.39 (s, 3H). δ_{c} (100 MHz, d^{6} - DMSO) δ : 151.9, 149.5, 146.5, 146.5, 144.1, 137.5, 137.5, 131.5, 129.3, 127.4, 125.6, 125.6, 116.9, 116.7, 113.4, 113.4, 102.7, 56.1. δ_{B} (128 MHz, d^{6} -acetone) δ : 29.7. **M.p**: 119-121 °C. **HRMS** (ESI) m/z for C₁₃H₁₂BFIO₃ [M+H]⁺: calcd. 372.9908; found, 372.9897.

1.3.4 Synthesis of (2-iodo-5-methyl-[1,1'-biphenyl]-3-yl)boronic acid (8_A)

The title compound was prepared using the general procedure for regioselective Suzuki-Miyaura cross-coupling reaction and isolated as a white solid (**47%** yield). **IR** (cast film, cm⁻¹) 3304, 3086, 3055, 2986, 2942, 1614, 1597, 1157, 1024, 935, 824. $\delta_{\rm H}$

(400 MHz, d⁶-DMSO) δ: 8.12 (s, 2H), 7.06 (s, 1H), 7.33-7.46 (m, 5H), 7.13 (s, 1H), 2.29 (s, 3H). δ_C (100 MHz, d⁶-DMSO) δ: 145.8, 142.4, 139.1, 138.5, 128.7, 128.3, 128.2, 127.1, 99.9, 20.2. δ_B (128 MHz, d⁶-acetone) δ: 29.3. M.p: 126-128 °C. HRMS (ESI) m/z for C₁₃H₁₃BIO₂ [M+H]⁺: calcd. 339.0053; found, 339.0046.

1.3.5 Synthesis of (2-iodo-4'-isopropyl-5-methyl-[1,1'-biphenyl]-3-yl)boronic acid (9_A)

The title compound was prepared using the general procedure for MIE reaction of 2,3-diiodo-5-substituted biphenyl derivatives with borate and isolated as a white solid (**40%** yields). **IR** (cast film, cm⁻¹) 3318, 3104, 3095,

2984, 2812, 1601, 1575, 886, 776. $\delta_{\rm H}$ (400 MHz, d^6 -DMSO) δ : 8.24 (s, 2H), 7.29 (d, 2H, J = 8.0 Hz), 7.16 (d, 2H, J = 7.8 Hz), 7.02 (s, 1H), 6.93 (s, 1H), 2.62 (sept, 1H, J = 6.8 Hz), 2.25 (s, 3H), 1.23 (d, 6H, J = 6.8 Hz). $\delta_{\rm C}$ (100 MHz, d^6 -DMSO) δ : 147.4, 145.3, 142.2, 136.6, 132.1, 130.3, 129.1, 125.9, 98.8, 33.2, 23.9, 20.3. $\delta_{\rm B}$ (128 MHz, d^6 -acetone) δ : 29.5.

M.p: 117-119 °C. **HRMS** (ESI) m/z for C₁₆H₁₉BIO₂ [M+H]⁺: calcd. 381.0523; found, 381.0520.

1.3.6 Synthesis of (3'-fluoro-2-iodo-4'-methoxy-5-methyl-[1,1'-biphenyl]-3-yl) boronic acid (10_A)

The title compound was prepared using the general procedure for MIE reaction of 2,3-diiodo-5-substituted biphenyl derivatives with borate and isolated as a white solid (**60%** yields). **IR** (cast film, cm⁻¹) 3406, 3120, 3089, 3009,

2979, 1596, 1442, 1243, 1124, 1106, 912, 795. $\delta_{\rm H}$ (400 MHz, *d*⁶-DMSO) δ : 8.25 (s, 2H), 7.21 (dd, 1H, *J* = 8.8 Hz , *J* = 8.7 Hz), 7.00-7.09 (m, 3H), 6.9 (d, 1H, *J* = 1.7 Hz), 3.88 (s, 3H), 2.25 (s, 3H). $\delta_{\rm C}$ (100 MHz, *d*⁶-DMSO) δ :151.9, 149.4, 149.1, 146.5, 146.4, 143.9, 137.5, 137.5, 136.9, 132.4, 130.2, 125.6, 125.6, 116.8, 116.7, 113.4, 98.9, 56.1, 20.3. $\delta_{\rm B}$ (128 MHz, *d*⁶-acetone) δ : 29.3. **M.p**: 132-134 °C. **HRMS** (ESI) m/z for C₁₄H₁₄BFIO₃ [M+H]⁺: calcd. 387.0065; found, 387.0059.

1.3.7 Synthesis of (5-fluoro-2-iodo-[1,1'-biphenyl]-3-yl) boronic acid (11_A)

The title compound was prepared using the general procedure for MIE reaction of 2,3-diiodo-5-substituted biphenyl derivatives with borate and isolated as a white solid (**38%** yields). **IR** (cast film, cm⁻¹) 3298, 3084, 3068, 2994, 1631, 1599, 1425, 1348, 1275, 1186, 1015,

784. $\delta_{\rm H}$ (400 MHz, d^6 -DMSO) δ : 8.44 (s, 2H), 7.35-7.50 (m, 3H) , 7.27 (d, 2H, J = 6.9 Hz), 7.11 (dd, 1H, J = 2.9 Hz, J = 9.4 Hz), 7.01 (dd, 1H, J = 2.9 Hz, J = 8.6 Hz) . $\delta_{\rm C}$ (100 MHz, d^6 -DMSO) δ : 162.9, 160.5, 147.8, 147.7, 143.6, 129.0, 128.3, 128.2, 128.1, 127.9, 118.0,

117.8, 116.2, 116.0, 96.2, 96.1. **δ**_B (128 MHz, *d*⁶-acetone) δ: 29.4. **M.p**: 135-137 °C. **HRMS** (ESI) m/z for C₁₂H₁₀BFIO₂ [M+H]⁺: calcd. 342.9803; found, 342.9799.

1.3.8 Synthesis of (5-chloro-2-iodo-[1,1'-biphenyl]-3-yl) boronic acid (12_A)

The title compound was prepared using the general procedure for MIE reaction of 2,3-diiodo-5-substituted biphenyl derivatives with borate and isolated as a white solid (**53%** yields). **IR** (cast film, cm⁻¹) 3314, 3109, 3058, 3017, 1621, 1597, 1414, 1283, 1138, 1017,

973, 712. δ_H (400 MHz, d⁶-DMSO) δ: 8.50 (s, 2H), 7.40-7.48 (m, 4H), 7.25-7.29 (m, 2H),
7. 29 (d, 1H, J = 2.3 Hz), 7. 17 (d, 1H, J = 7.8 Hz). δ_C (100 MHz, d⁶-DMSO) δ: 151.4, 147.6,
143.4, 132.7, 130.7, 128.9, 128.4, 128.1, 127.9, 100.5. δ_B (128 MHz, d⁶-acetone) δ: 28.9.
M.p: 138-140 °C. HRMS (ESI) m/z for C₁₂H₁₀BClIO₂ [M+H]⁺: calcd. 358.9507; found, 358.9505.

1.3.9 Synthesis of (5-bromo-2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (13_A)

The title compound was prepared using the general procedure for MIE reaction of 2,3-diiodo-5-substituted biphenyl derivatives with borate and isolated as a white solid (**65%** yields). **IR** (cast film, cm⁻¹) 3274, 3108, 3061, 2941, 1612, 1599, 1296, 1101, 862, 697. $\delta_{\rm H}$

(400 MHz, d^6 -DMSO) δ : 8.47 (s, 2H), 7.40-7.48 (m, 3H), 7. 36 (d, 1H, J = 2.3 Hz), 7. 29 (d, 1H, J = 2.3 Hz), 7. 26 (d, 2H, J = 6.7 Hz). $\delta_{\rm C}$ (100 MHz, d^6 -DMSO) δ : 152.1, 147.9, 143.3, 133.5, 131.2, 128.9, 128.2, 127.9, 121.4, 101.3. $\delta_{\rm B}$ (128 MHz, d^6 -acetone) δ : 29.3. **M.p**: 140-144 °C. **HRMS** (ESI) m/z for C₁₂H₁₀BBrIO₂ [M+H]⁺: calcd. 402.9002; found, 402.8997.

1.3.10 Synthesis of (2-iodo-5-methoxy-[1,1'-biphenyl]-3-yl)boronic acid (14_A)

The title compound was prepared using the general procedure for MIE reaction of 2,3-diiodo-5-substituted biphenyl derivatives with borate and isolated as a white solid (**83%** yields). **IR** (cast film, cm⁻¹) 3288, 3087, 3025, 2984, 1601, 1587, 1289, 1148, 1012,

937, 812. **δ_H** (400 MHz, *d*⁶-DMSO) δ: 8.32 (s, 2H), 7.38-7.45 (m, 3H), 7.27 (d, 2H, *J* = 6.8 Hz), 6.78 (d, 1H, *J* = 2.9 Hz), 6.75 (d, 1H, *J* = 2.9 Hz), 3.75 (s, 3H). **δ_c** (100 MHz, *d*⁶-DMSO) δ: 158.6, 150.1, 146.7, 144.6, 129.1, 128.0, 127.6, 117.3, 115.2, 91.2, 55.3. **δ_B** (128 MHz, *d*⁶-acetone) δ: 29.4. **M.p**: 119-121 °C. **HRMS** (ESI) m/z for C₁₃H₁₃BIO₃ [M+H]⁺: calcd. 355.0002; found, 354.9997.

1.3.11 Synthesis of (2-iodo-4'-isopropyl-5-methoxy-[1,1'-biphenyl]-3-yl)boronic acid (15_A)

The title compound was prepared using the general procedure for MIE reaction of 2,3-diiodo-5-substituted biphenyl derivatives with borate and isolated as a white solid (**86%** yields). **IR** (cast film, cm⁻¹) 3369, 3107, 3081, 2932,

1621, 1598, 1272, 1133, 1098, 986, 862. δ_{H} (400 MHz, d^{6} -DMSO) δ : 8.30 (s, 2H), 7.30 (d, 2H, J = 8.0 Hz), 7.19 (d, 2H, J = 8.0 Hz), 6.77 (d, 1H, J = 2.9 Hz), 6.71 (d, 1H, J = 2.9 Hz), 3.75 (s, 3H), 2.95 (sep, 1H, J = 6.9Hz), 1.24 (d, 6H, J = 6.9Hz). δ_{C} (100 MHz, d^{6} -DMSO) δ :158.6, 150.0, 147.5, 146.6, 141.9, 128.9, 125.9, 117.2, 115.2, 91.3, 55.3, 33.1, 23.8. δ_{B} (128 MHz, d^{6} -acetone) δ : 28.1. **M.p**: 91-93 °C. **HRMS** (ESI) m/z for C₁₆H₁₉BIO₃ [M+H]⁺: calcd. 397.0472; found, 397.0464.

1.3.12 Synthesis of (2-iodo-3',5-dimethoxy-[1,1'-biphenyl]-3-yl)boronic acid (16_A)

The title compound was prepared using the general procedure for MIE reaction of 2,3-diiodo-5-substituted biphenyl derivatives with borate and isolated as a white solid (63% yields). IR (cast film, cm⁻¹) 3312, 3087, 3014, 2998,

2888, 1642, 1609, 1299, 1283, 1114, 1107, 983. δ_{H} (400 MHz, *d*⁶-DMSO) δ: 8.30 (s, 2H), 7.34 (dd, 1H, *J* = 7.9 Hz, *J* = 7.8 Hz), 6.95 (dd, 1H, *J* = 2.1 Hz, *J* = 8.3 Hz), 6.81 (d, 1H, *J* = 7.6 Hz), 6.73-6.78 (m, 2H), 6.73 (d, 1H, *J* = 2.9 Hz), 3.78 (s, 3H), 3.75 (s, 3H). δ_{C} (100 MHz, *d*⁶-DMSO) δ: 158.7, 158.6, 146.5, 145.8, 129.2, 121.5, 117.3, 115.2, 114.9, 112.9, 91.1, 55.3, 55.1. δ_{B} (128 MHz, *d*⁶-acetone) δ: 29.2. **M.p**: 129-131 °C. **HRMS** (ESI) m/z for C₁₄H₁₅BIO₄ [M+H]⁺: calcd. 385.0108; found, 385.0105.

1.3.13 Synthesis of (3'-fluoro-2-iodo-4',5-dimethoxy-[1,1'-biphenyl]-3-yl) boronic acid (17_A)

The title compound was prepared using the general procedure for MIE reaction of 2,3-diiodo-5-substituted biphenyl derivatives with borate and isolated as a white solid (77% yields). IR (cast film, cm⁻¹) 3297, 3086, 3078, 3027,

2996, 1617, 1589, 1588, 1418, 1207, 1167, 1117, 862. $\delta_{\rm H}$ (400 MHz, d^6 -DMSO) δ : 8.31 (s, 2H), 7.23 (dd, 1H, J = 8.6 Hz, J = 8.7 Hz), 7.10 (dd, 1H, J = 1.7 Hz, J = 12.2 Hz), 7.04 (d, J = 8.4 Hz, 2H), 6.80 (d, 1H, J = 2.9 Hz), 6.75 (d, 1H, J = 2.9 Hz), 3.89 (s, 3H), 3.76 (s, 3H). $\delta_{\rm C}$ (100 MHz, d^6 -DMSO) δ : 158.6, 151.8, 150.1, 149.4, 146.6, 146.5, 145.2, 137.3, 137.2, 125.6, 125.6, 117.4, 116.8, 116.7, 115.3, 113.3, 91.4, 56.0, 55.3. $\delta_{\rm B}$ (128 MHz, d^6 -

acetone) δ: 29.2. **M.p**: 134-136 °C. **HRMS** (ESI) m/z for C₁₄H₁₄BFIO₄ [M+H]⁺: calcd. 403.0014; found, 403.0005.

1.3.14 Synthesis of (2-iodo-5-methoxy-4'-(methoxymethyl)-[1,1'-biphenyl]-3-yl) boronic acid (18_A)

The title compound was prepared using the general procedure for MIE reaction of 2,3-diiodo-5-substituted biphenyl derivatives with borate and isolated as a white solid (**80%** yields). **IR** (cast film, cm⁻¹) 3213, 3099, 3085,

2988, 1621, 1608, 1598, 1249, 1120, 1108, 1096, 877, 648. $\delta_{\rm H}$ (400 MHz, d^6 -DMSO) δ : 8.31 (s, 2H), 7.37 (d, 2H, J = 7.8 Hz), 7.24 (d, 2H, J = 7.8 Hz), 6.78 (d, 1H, J = 2.8 Hz), 6.74 (d, 1H, J = 2.7 Hz), 4.46 (s, 2H), 3.75 (s, 3H), 3.32 (s, 3H). $\delta_{\rm C}$ (100 MHz, d^6 -DMSO) δ : 158.6, 150.1, 146.5, 143.6, 137.6, 128.9, 127.1, 117.3, 115.2, 91.2, 73.4, 57.7, 55.3. $\delta_{\rm B}$ (128 MHz, d^6 -acetone) δ : 30.0. **M.p**: 142-144 °C. **HRMS** (ESI) m/z for C₁₅H₁₇BIO₄ [M+H]⁺: calcd. 399.0265; found, 399.0258.

1.3.15 Synthesis of (2-iodo-4',5-dimethoxy-[1,1'-biphenyl]-3-yl)boronic acid (19_A)

The title compound was prepared using the general procedure for MIE reaction of 2,3-diiodo-5-substituted biphenyl derivatives with borate and isolated as a white solid (**85%** yields). **IR** (cast film, cm⁻¹) 3295, 3076, 3028, 2981,

1623, 1601, 1573, 1253, 1208, 1147, 1129, 837, 728. **δ**_H (400 MHz, *d*⁶-DMSO) δ: 8.31 (s, 2H), 7.18 (d, 2H, *J* = 8.2 Hz), 6.98 (d, 2H, *J* = 8.3 Hz), 6.75 (d, 1H, *J* = 2.0 Hz), 6.70 (d, 1H, *J* = 2.0 Hz), 3.79 (s, 3H), 3.74 (s, 3H) . **δ**_C (100 MHz, *d*⁶-DMSO) δ: 158.7, 158.6, 150.2,

146.4, 136.9, 130.3, 117.0, 115.4, 113.4, 91.9, 55.3, 55.2. **δ**_B (128 MHz, *d*⁶-acetone) δ: 29.4. **M.p**: 124-126 °C. **HRMS** (ESI) m/z for C₁₄H₁₅BIO₄ [M+H]⁺: calcd. 385.0108; found, 385.0101.

1.3.16 Synthesis of (2-iodo-5-methoxy-3'-(trifluoromethoxy)-[1,1'-biphenyl]-3yl)boronic acid (20_A)

The title compound was prepared using the general procedure for MIE reaction of 2,3-diiodo-5-substituted biphenyl derivatives with borate and isolated as a white solid (**67%** yields). **IR** (cast film, cm⁻¹) 3312, 3097, 3058,

2942, 2828, 1589, 1546, 1427, 1343, 1242, 1168, 1127, 852, 742. $\delta_{\rm H}$ (400 MHz, d^{6-} DMSO) δ : 8.32 (s, 2H), 7.59 (dd, 1H, J = 8.0 Hz , J = 7.9 Hz), 7.40 (d, 1H, J = 7.6 Hz), 7.30 (d, 1H, J = 7.6 Hz), 7.20 (s, 1H), 6.84 (d, 1H, J = 2.9 Hz), 6.77 (d, 1H, J = 2.9 Hz), 3.77 (s, 3H). $\delta_{\rm C}$ (100 MHz, d^{6-} DMSO) δ : 158.6, 150.2, 147.8, 146.5, 144.9, 130.2, 128.3, 123.9, 121.7, 121.4, 120.1, 118.9, 117.9, 116.3, 115.2, 90.7, 55.4. $\delta_{\rm B}$ (128 MHz, d^{6-} acetone) δ : 29.6. **M.p**: 126-128 °C. **HRMS** (ESI) m/z for C₁₄H₁₂BF₃IO₄ [M+H]⁺: calcd. 438.9825; found, 438.9814.

1.3.17 Synthesis of (2-iodo-5-methoxy-4'-phenoxy-[1,1'-biphenyl]-3-yl)boronic acid (21_A)

The title compound was prepared using the general procedure for MIE reaction of 2,3-diiodo-5-substituted biphenyl derivatives with borate and isolated as a white solid (**59%** yields). **IR** (cast film, cm⁻¹) 3348, 3124, 3109,

3058, 2956, 1597, 1586, 1579, 1282, 1214, 1175, 1127, 812. δ_H (400 MHz, d⁶-DMSO) δ:

8.36 (s, 2H), 7.43 (dd, 2H, J = 8.0 Hz, J = 7.8 Hz), 7.26 (d, 2H, J = 8.5 Hz), 7.18 (dd, 1H, J = 7.4 Hz, J = 7.3 Hz), 7.07 (d, 2H, J = 7.8 Hz), 7.03 (d, 2H, J = 8.5 Hz), 6.80 (d, 1H, J = 3.0 Hz), 6.72 (d, 1H, J = 3.0 Hz), 3.75 (s, 3H). $\delta_{\rm C}$ (100 MHz, d^6 -DMSO) $\delta_{\rm C}$: 158.6, 156.4, 156.3, 146.1, 139.6, 160.9. 130.2, 123.9, 119.1, 117.7, 117.4, 115.3, 91.6, 55.4. $\delta_{\rm B}$ (128 MHz, d^6 -acetone) $\delta_{\rm C}$: 29.4. **M.p**: 129-131 °C. **HRMS** (ESI) m/z for C₁₉H₁₇BIO₄ [M+H]⁺: calcd. 447.0265; found, 447.0262.

1.3.18 Synthesis of (3-(benzo[d][1,3]dioxol-5-yl)-2-iodo-5-methoxyphenyl)boronic acid (22_A)

The title compound was prepared using the general procedure for MIE reaction of 2,3-diiodo-5-substituted biphenyl derivatives with borate and isolated as a white solid (**66%** yields). **IR** (cast film, cm⁻¹) 3298, 3108, 3068, 3028, 2994, 1619,

1578, 1348, 1286, 1274. 1208, 1142, 1115, 921, 689. **δ**_H (400 MHz, *d*⁶-DMSO) δ: 8.23 (s, 2H), 6.96 (d, 1H, *J* = 7.9 Hz), 6.69-6.78 (m, 3H), 6.53 (s, 1H), 6.06 (s, 2H), 3.75 (s, 3H). **δ**_C (100 MHz, *d*⁶-DMSO) δ: 158.5, 150.0, 146.7, 146.6, 146.3, 138.5, 122.7, 117.2, 115.3, 109.7, 107.9, 101.1, 91.7, 55.3. **δ**_B (128 MHz, *d*⁶-acetone) δ: 29.3. **M.p**: 108-110 °C. **HRMS** (ESI) m/z for C₁₄H₁₃BIO₅ [M+H]⁺: calcd. 398.9901; found, 398.9893.

1.3.19 Synthesis of (3-(2,3-dihydrobenzofuran-5-yl)-2-iodo-5-methoxyphenyl) boronic acid (23_A)

The title compound was prepared using the general procedure for MIE reaction of 2,3-diiodo-5-substituted biphenyl derivatives with borate and isolated as a white solid (**53%** yields). **IR** (cast film, cm⁻¹) 3368, 3108, 3088, 3042, 2995, 1632, 1614, 1586, 1312, 1277, 1148, 986, 834. $\delta_{\rm H}$ (400 MHz, *d*⁶-DMSO) δ : 8.27 (s, 2H), 7.11 (s, 1H), 6.97 (dd, 1H, *J* = 1.6 Hz, *J* = 8.2 Hz), 6.80 (d, 1H, *J* = 8.2 Hz), 6.76 (d, 1H, *J* = 3.1 Hz), 6.71 (d, 1H, *J* = 3.0 Hz), 4.56 (t, 2H, *J* = 8.7 Hz), 3.75 (s, 3H), 4.56 (t, 2H, *J* = 8.6 Hz). $\delta_{\rm C}$ (100 MHz, *d*⁶-DMSO) δ : 159.1, 158.6, 150.1, 146.8, 136.9, 128.8, 126.9, 125.8, 116.9, 115.3, 108.2, 92.1, 71.1, 55.2, 29.1. $\delta_{\rm B}$ (128 MHz, *d*⁶-acetone) δ : 29.8. **M.p**: 137-139 °C. **HRMS** (ESI) m/z for C₁₅H₁₅BIO₄ [M+H]⁺: calcd. 397.0108; found, 397.0104.

1.3.20 Synthesis of (2-iodo-5-methoxy-3-(6-methoxypyridin-3-yl)phenyl) boronic acid (24_A)

The title compound was prepared using the general procedure for MIE reaction of 2,3-diiodo-5-substituted biphenyl derivatives with borate and isolated as a white solid

(65% yields). IR (cast film, cm⁻¹) 3307, 3109, 3086, 3062,

2997, 1614, 1598, 1388, 1286, 1214, 1178, 1137, 899. $\delta_{\rm H}$ (400 MHz, *d*⁶-DMSO) δ : 8.33 (s, 2H), 8.08 (d, 1H, *J* = 1.8 Hz), 7.61 (dd, 1H, *J* = 2Hz, *J* = 8.4 Hz), 6.89 (d, 1H, *J* = 8.5 Hz), 6.89 (d, 1H, *J* = 2.8 Hz), 6.76 (d, 1H, *J* = 2.8 Hz) 3.90 (s, 3H), 3.77 (s, 3H). $\delta_{\rm C}$ (100 MHz, *d*⁶-DMSO) δ : 162.8, 158.7, 150.1, 146.5, 143.1, 140.1, 133.8, 117.6, 115.6, 109.6, 92.1, 55.4, 53.3. $\delta_{\rm B}$ (60 MHz, *d*⁶-acetone) δ : 29.3. **M.p**: 139-141 °C. **HRMS** (ESI) m/z for C₁₃H₁₄BINO₄ [M+H]⁺: calcd. 386.0061; found, 386.0058.

1.4 General Procedure for Organocatalytic Amidations

Into a 25 mL round bottom flask equipped with a stir bar were added carboxylic acid (0.55 mmol, 0.1M, 1.1 equiv), *ortho*-iodobiphenylboronic acid derivative (0.05 mmol, 10 mol%) and 1 g of activated 4Å molecular sieves (preactivation overnight in an oven at

~250 °C or by Kugelrohr for 2h at 250 °C under high vacuum). Dichloromethane (7 mL) was added and the mixture was stirred for 10 min. Then, amine (0.5 mmol, 1 equiv) was added (in order to get reproducible results, it was necessary to use a gastight 100 μ L syringe). The resulting mixture was stirred for 6 h at room temperature (24-25 °C). The reaction mixture was filtered through a pad of Celite® 545, the filtrate was washed with aqueous hydrochloric solution (pH = 4), aqueous sodium hydroxide solution (pH = 10-11) and brine, respectively. The organic layer was collected, dried over anhydrous Na₂SO₄, filtered and evaporated to yield the title amide product.

1.4.1 Synthesis of tert-butyl (2-phenylacetyl)glycinate (26)

¹) 3285, 3024, 3012, 1764, 1652, 1614, 1520, 864, 662. $\delta_{\rm H}$ (400 MHz, *d*⁶-DMSO) δ : 7.26-7.35 (m, 5H), 6.16 (bs, 1H), 3.86 (d, 2H, *J* = 5.0 Hz), 3.58 (s, 2H), 1.42 (s, 9H). $\delta_{\rm C}$ (100 MHz, *d*⁶-DMSO) δ : 171.1, 168.8, 134.7, 129.5, 128.9, 127.3, 82.2, 43.4, 42.2, 28.0. **HRMS** (ESI) m/z for C₁₄H₁₉NO₃Na [M+Na]⁺: calcd. 272.1263; found, 272.1269.

1.4.2 Synthesis of N-benzyl-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1Hindol-3-yl)acetamide (27)

The title compound was prepared using the general procedure for organocatalytic amidation reaction and isolated as a white solid (**94%** yields). The spectroscopic data for this compound are matched the

previous report by R. M. Al-Zoubi, O. Marion, D. G. Hall, *Angew. Chem. Int. Ed.* **2008**, *47*, 2876-2879.

1.4.3 Synthesis of benzyl (S)-(1-(benzylamino)-1-oxopropan-2-yl)carbamate (28)

The title compound was prepared using the general procedure for organocatalytic amidation reaction and isolated as off-white solid (**95%** yields). **IR** (cast film,

cm⁻¹) 3304, 3295, 3095, 3021, 2997, 1712, 1648, 1623, 1594, 824, 725. **δ**_H (400 MHz, *d*-CDCl₃) δ: 7.20-7.50 (m, 10H), 6.71 (d, 1H, *J* = 5.4 Hz), 5.00 (s, 2H), 5.74 (s, 1H), 3.94 (s, 2H), 3.72 (t, 1H, *J* = 6.6 Hz), 1.20 (d, 3H, *J* = 6.6 Hz). **δ**_C (100 MHz, *d*-CDCl₃) δ: 175.2, 155.2, 137.4, 136.7, 128.5, 128.4, 127.8, 127.8, 127.7, 65.1, 54.9, 51.1, 42.8, 18.9. **M.p**: 129-131 °C. **HRMS** (ESI) m/z for C₁₈H₂₀N₂O₃Na [M+Na]⁺: calcd. 335.1372; found, 335.1383.

1.4.4 Synthesis of N-(2-(benzylamino)-2-oxoethyl)octanamide (29)

The title compound was prepared using the general procedure for organocatalytic amidation reaction and isolated as colorless oil (**40%**

yields). **IR** (cast film, cm⁻¹) 3314, 3294, 3015, 3007, 2997, 1654, 1642, 1610, 1607, 1594, 945, 687. $\delta_{\rm H}$ (400 MHz, *d*-CDCl₃) δ : 7.23-7.32 (m, 5H), 7.07 (s, 1H), 6.61 (s, 1H), 4.40 (d, 2H, *J* = 5.7 Hz), 3.94 (d, 2H, *J* = 5.1 Hz), 2.18 (t, 2H, *J* = 7.5 Hz), 1.56 (s, 2H), 1.10-1030 (m, 8H), 0.87 (t, 3H, *J* = 6.3 Hz). $\delta_{\rm C}$ (100 MHz, *d*-CDCl₃) δ : 174.1, 169.2, 138.0, 128.8, 127.8, 127.6, 43.7, 43.5, 36.5, 31.8, 29.4, 29.1, 25.7, 22.7, 14.2, . **HRMS** (ESI) m/z for C₁₇H₂₆N₂NaO₂ [M+Na]⁺: calcd. 313.1892; found, 313.1907.

1.4.5 Synthesis of N-benzyl-2-(phenylamino)acetamide (30)

The title compound was prepared using the general procedure for organocatalytic amidation reaction and isolated as a white solid (**50%** yields). The spectroscopic

data for this compound are matched the previous report by A. J. A. Watson, R. J. Wakeham, A. C. Maxwell and J. M. J. Williams, *Tetrahedron* **2014**, 70, 3683-3690.

1.4.6 Synthesis of (S)-N-benzyl-2-(4-isobutylphenyl)propanamide (31)

The title compound was prepared using the general procedure for organocatalytic amidation reaction and isolated as a white solid (**71%** yields). The

spectroscopic data for this compound are matched the previous report by Sudrik, Surendra G.; Chavan, Sambhaji P.; Chandrakumar, K. R. S.; Pal, Sourav; Date, Sadgopal K.; Chavan, Subhash P.; Sonawane, Harikisan R. *J. Org. Chem.* **2002**, *67*, 1574-1579.

1.5 NMR Spectra for New Compound.

1.5.1 ¹*H*-*NMR* of 5-fluoro-2,3-diiodo-1,1'-biphenyl (11) in CDCl₃ at 25 °C.

Page 24

.

1.5.2 ¹³C-NMR of 5-fluoro-2,3-diiodo-1,1'-biphenyl (11) in CDCl₃ at 25 °C.

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

1.5.3 ¹H-NMR of 2,3-diiodo-4'-isopropyl-1,1'-biphenyl (15) in CDCl₃ at 25 °C.

Page 26

.

Department of Chemistry

1.5.4 ¹³C-NMR of 2,3-diiodo-4'-isopropyl-1,1'-biphenyl (15) in CDCl₃ at 25 °C.

1.5.5

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

1.5.6 ¹H-NMR of 2,3-diiodo-3',5-dimethoxy-1,1'-biphenyl (16) in CDCl₃ at 25 °C.

1.5.7 ¹³C-NMR of 2,3-diiodo-3',5-dimethoxy-1,1'-biphenyl (16) in CDCl₃ at 25 °C.

1.5.8

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

1.5.9 ¹H-NMR of 3'-fluoro-2,3-diiodo-4',5-dimethoxy-1,1'-biphenyl (17) in CDCl₃ at 25 °C.

 $_{\text{Page}}30$

Department of Chemistry

1.5.10 ¹³C-NMR of 3'-fluoro-2,3-diiodo-4',5-dimethoxy-1,1'-biphenyl (17) in CDCl₃ at 25 °C.

 $P_{age}31$

1.5.11 *R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald*

1.5.13 ¹³C-NMR of 2,3-diiodo-5-methoxy-4'-(methoxymethyl)-1,1'-biphenyl (18) in CDCl₃ at 25 °C.

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

 $_{\text{Page}}34$

Department of Chemistry

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

1.5.16 ¹H-NMR of 2,3-diiodo-5-methoxy-3'-(trifluoromethoxy)-1,1'-biphenyl (20) in CDCl₃ at 25 °C.

Page36

1.5.17 ¹³C-NMR of 2,3-diiodo-5-methoxy-3'-(trifluoromethoxy)-1,1'-biphenyl (20) in CDCl₃ at 25 °C.

1.5.18. *R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald*

1.5.19 ¹H-NMR of 2,3-diiodo-5-methoxy-4'-phenoxy-1,1'-biphenyl (21) in CDCl₃ at 25 °C.

 $_{\text{Page}}38$

1.5.20 ¹³C-NMR of 2,3-diiodo-5-methoxy-4'-phenoxy-1,1'-biphenyl (21) in CDCl₃ at 25 °C.

1.5.22 ¹³C-NMR of 5-(2,3-diiodo-5-methoxyphenyl)benzo[d][1,3]dioxole (22) in CDCl₃ at 25 °C.

 $P_{age}42$

Department of Chemistry

1.5.24 ¹³C-NMR of 5-(2,3-diiodo-5-methoxyphenyl)-2,3-dihydrobenzofuran (23) in CDCl₃ at 25 °C.

Page43

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

 $_{\rm Page}44$

1.5.26 ¹³C-NMR of 5-(2,3-diiodo-5-methoxyphenyl)-2-methoxypyridine (24) in CDCl₃ at 25 °C.

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

1.5.27 ¹H-NMR of (2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (5_A) in d⁶⁻DMSO at 25 ^oC.

,

Department of Chemistry

1

1.5.29 ¹¹B-NMR of (2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (5_A) in d⁶-acetone at 25 °C

 $_{\rm Page}48$

Department of Chemistry

1.5.30 ¹H-NMR of (2-iodo-4'-isopropyl-[1,1'-biphenyl]-3-yl)boronic acid (6_A) in d⁶⁻DMSO at 25 °C.

 $_{\rm Page}49$

1.5.31 ¹³C-NMR of (2-iodo-4'-isopropyl-[1,1'-biphenyl]-3-yl)boronic acid (6_A) in d⁶⁻DMSO at 25 °C.

 ${}^{\rm Page}50$

1.5.32 ¹¹B-NMR of (2-iodo-4'-isopropyl-[1,1'-biphenyl]-3-yl)boronic acid (6_A) in d⁶-acetone at 25 °C

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

1.5.33 ¹H-NMR of (3'-fluoro-2-iodo-4'-methoxy-[1,1'-biphenyl]-3-yl)boronic acid (7_A) in d⁶⁻DMSO at 25 °C.

1.5.34 ¹³C-NMR of (3'-fluoro-2-iodo-4'-methoxy-[1,1'-biphenyl]-3-yl)boronic acid (7_A) in d⁶⁻DMSO at 25 °C.

 ${}^{\rm Page} 53$

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

1.5.35 ¹¹B-NMR of (3'-fluoro-2-iodo-4'-methoxy-[1,1'-biphenyl]-3-yl)boronic acid (7_A) in d⁶-acetone at 25 °C

 $P_{age}54$

1.5.36 ¹H-NMR of (2-iodo-5-methyl-[1,1'-biphenyl]-3-yl)boronic acid (8_A) in d⁶⁻ DMSO at 25 °C.

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

1.5.37 ¹³C–NMR of (2-iodo-5-methyl-[1,1'-biphenyl]-3-yl)boronic acid (8_A) in d^{6-} DMSO at 25 °C.

 $P_{age}56$

I.

 $\mathsf{Page} S7$

1.5.38 ¹¹B-NMR of (2-iodo-5-methyl-[1,1'-biphenyl]-3-yl)boronic acid (8_A) in d⁶acetone at 25 °C

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

1.5.39 ¹H-NMR of (2-iodo-4'-isopropyl-5-methyl-[1,1'-biphenyl]-3-yl)boronic acid (9_A) in d⁶⁻DMSO at 25 °C.

 ${}^{\rm Page}58$

1.5.40 ¹³C-NMR of (2-iodo-4'-isopropyl-5-methyl-[1,1'-biphenyl]-3-yl)boronic acid (9_A) in d⁶⁻DMSO at 25 °C.

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

1.5.41 ¹¹B-NMR of (2-iodo-4'-isopropyl-5-methyl-[1,1'-biphenyl]-3-yl)boronic acid (9_A) in d⁶-acetone at 25 °C

 ${}^{\rm Page}60$

1.5.42 ¹H-NMR of (3'-fluoro-2-iodo-4'-methoxy-5-methyl-[1,1'-biphenyl]-3-yl) boronic acid (10_A) in d⁶⁻DMSO at 25 °C.

Department of Chemistry

1.5.44 ¹¹B-NMR of (3'-fluoro-2-iodo-4'-methoxy-5-methyl-[1,1'-biphenyl]-3-yl) boronic acid (10_A) in d⁶-acetone at 25 °C

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

Department of Chemistry

Page 64

Page 65

1.5.47 ¹¹B-NMR of (5-fluoro-2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (11_A) in d⁶acetone at 25 °C

Page 66

1.5.48 ¹H-NMR of (5-chloro-2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (12_A) in d⁶⁻ DMSO at 25 °C.

Page 68

1.5.49 ¹³C–NMR of (5-chloro-2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (12_A) in d^{6-} DMSO at 25 °C.

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

Page 69

1.5.50 ¹¹B-NMR of (5-chloro-2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (12_A) in d⁶-acetone at 25 °C

 $_{Page}70$

1.5.51 ¹H-NMR of (5-bromo-2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (13_A) in d^{6-} DMSO at 25 °C.

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

Page 71

1.5.52 ¹³C-NMR of (5-bromo-2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (13_A) in d^{6-} DMSO at 25 °C.

 $_{Page}72$

1.5.53 ¹¹B-NMR of (5-bromo-2-iodo-[1,1'-biphenyl]-3-yl)boronic acid (13_A) in d⁶acetone at 25 °C

Page 73

 $_{Page}74$

1.5.55 ¹³C-NMR of (2-iodo-5-methoxy-[1,1'-biphenyl]-3-yl)boronic acid (14_A) in d^{6} -DMSO at 25 °C.

 $_{\rm Page}75$

1.5.56 ¹¹B-NMR of (2-iodo-5-methoxy-[1,1'-biphenyl]-3-yl)boronic acid (14_A) in d⁶-acetone at 25 °C

 $_{Page}76$

1.5.57 ¹H-NMR of (2-iodo-4'-isopropyl-5-methoxy-[1,1'-biphenyl]-3-yl)boronic acid (15_A) in d⁶⁻DMSO at 25 °C.

Page77

 $_{Page}78$

1.5.59 ¹¹B-NMR of (2-iodo-4'-isopropyl-5-methoxy-[1,1'-biphenyl]-3-yl)boronic acid (15_A) in d⁶-acetone at 25 °C

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

 $P_{age}79$

1.5.60 ¹H-NMR of (2-iodo-3',5-dimethoxy-[1,1'-biphenyl]-3-yl)boronic acid (16_A) in d⁶⁻DMSO at 25 °C.

1.5.61 ¹³C-NMR of (2-iodo-3',5-dimethoxy-[1,1'-biphenyl]-3-yl)boronic acid (16_A) in $d^{6-}DMSO$ at 25 °C.

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

Page81

 ${}^{\rm Page}82$

1.5.63 ¹H-NMR of (3'-fluoro-2-iodo-4',5-dimethoxy-[1,1'-biphenyl]-3-yl)boronic acid (17_A) in d⁶⁻DMSO at 25 °C.

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

1.5.64 ¹³C-NMR of (3'-fluoro-2-iodo-4',5-dimethoxy-[1,1'-biphenyl]-3-yl)boronic acid (17_A) in d⁶⁻DMSO at 25 °C.

 ${}^{\rm Page}84$

Department of Chemistry

1.5.65 ¹¹B-NMR of (3'-fluoro-2-iodo-4',5-dimethoxy-[1,1'-biphenyl]-3-yl)boronic acid (17_A) in d⁶-acetone at 25 °C

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

Page 85

1.5.67 ¹H-NMR of (2-iodo-5-methoxy-4'-(methoxymethyl)-[1,1'-biphenyl]-3-yl) boronic acid (18_A) in d⁶⁻DMSO at 25 °C.

1.5.68 ¹³C-NMR of (2-iodo-5-methoxy-4'-(methoxymethyl)-[1,1'-biphenyl]-3-yl) boronic acid (18_A) in d⁶⁻DMSO at 25 °C.

 ${}^{\rm Page}87$

1.5.69 ¹¹B-NMR of (2-iodo-5-methoxy-4'-(methoxymethyl)-[1,1'-biphenyl]-3-yl) boronic acid (18_A) in d⁶-acetone at 25 °C

1.5.71 ¹H-NMR of (2-iodo-4',5-dimethoxy-[1,1'-biphenyl]-3-yl)boronic acid (19_A) in $d^{6-}DMSO$ at 25 °C.

 ${}^{\rm Page}89$

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

.

1.5.72 ${}^{13}C$ -NMR of (2-iodo-4',5-dimethoxy-[1,1'-biphenyl]-3-yl)boronic acid (19_A) in d⁶⁻DMSO at 25 °C.

 $_{\text{Page}}90$

1.5.73 ¹¹B-NMR of (2-iodo-4',5-dimethoxy-[1,1'-biphenyl]-3-yl)boronic acid (19_A) in d⁶-acetone at 25 °C

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

 $_{\rm Page}91$

1.5.74 ¹H-NMR of (2-iodo-5-methoxy-3'-(trifluoromethoxy)-[1,1'-biphenyl]-3-yl)boronic acid (20_A) in d^{6-} DMSO at 25 °C.

 $_{\rm Page}92$

1.5.75 ¹³C-NMR of (2-iodo-5-methoxy-3'-(trifluoromethoxy)-[1,1'-biphenyl]-3-yl)boronic acid (20_A) in d^{6-} DMSO at 25 °C.

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

 $_{\rm Page}93$

1.5.76 ¹¹B-NMR of (2-iodo-5-methoxy-3'-(trifluoromethoxy)-[1,1'-biphenyl]-3-yl) boronic acid (20_A) in d⁶-acetone at 25 °C

 $_{\text{Page}}94$

1.5.77 ¹H-NMR of (2-iodo-5-methoxy-4'-phenoxy-[1,1'-biphenyl]-3-yl)boronic acid (21_A) in d⁶⁻DMSO at 25 °C.

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

1.5.78 ¹³C–NMR of (2-iodo-5-methoxy-4'-phenoxy-[1,1'-biphenyl]-3-yl)boronic acid (21_A) in d⁶⁻DMSO at 25 °C.

1.5.79 ¹¹B-NMR of (2-iodo-5-methoxy-4'-phenoxy-[1,1'-biphenyl]-3-yl)boronic acid (21_A) in d⁶-acetone at 25 °C

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

 $_{\rm Page}97$

1.5.81 ¹H-NMR of (3-(benzo[d][1,3]dioxol-5-yl)-2-iodo-5-methoxyphenyl) boronic acid (22_A) in d⁶⁻DMSO at 25 °C.

 $_{\text{Page}}98$

1.5.82 ¹³C–NMR of (3-(benzo[d][1,3]dioxol-5-yl)-2-iodo-5-methoxyphenyl) boronic acid (22_A) in d⁶⁻DMSO at 25 °C.

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

1.5.83 ¹¹B-NMR of (3-(benzo[d][1,3]dioxol-5-yl)-2-iodo-5-methoxyphenyl) boronic acid (22_A) in d⁶-acetone at 25 °C

 $_{\rm Page}100$

1.5.84 ¹H-NMR of (3-(2,3-dihydrobenzofuran-5-yl)-2-iodo-5-methoxyphenyl) boronic acid (23_A) in d⁶⁻DMSO at 25 °C.

 ${}^{\rm Page}101$

1.5.85 ¹³C–NMR of (3-(2,3-dihydrobenzofuran-5-yl)-2-iodo-5-methoxyphenyl) boronic acid (23_A) in d⁶⁻DMSO at 25 °C.

1.5.86 ¹¹B-NMR of (3-(2,3-dihydrobenzofuran-5-yl)-2-iodo-5-methoxyphenyl) boronic acid (23_A) in d⁶-acetone at 25 °C

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

 ${}^{\rm Page}103$
1.5.87 ¹H-NMR of 2-iodo-5-methoxy-3-(6-methoxypyridin-3-yl)phenyl) boronic acid (24_A) in d⁶⁻DMSO at 25 °C.

 $_{\rm Page}104$

Department of Chemistry

1.5.88 ¹³C–NMR of 2-iodo-5-methoxy-3-(6-methoxypyridin-3-yl)phenyl) boronic acid (24_A) in d⁶⁻DMSO at 25 °C.

 $_{\rm Page} 105$

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

1.5.89 ¹¹B-NMR of 2-iodo-5-methoxy-3-(6-methoxypyridin-3-yl)phenyl) boronic acid (24_A) in d⁶-acetone at 25 °C

 $_{Page}106$

1.5.90 ¹H-NMR of tert-butyl (2-phenylacetyl)glycinate (26) in d-CDCl₃ at 25 °C

 ${}_{\rm Page}107$

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

1.5.91 ¹³C-NMR of tert-butyl (2-phenylacetyl)glycinate (26) in d-CDCl₃ at 25 °C.

 $_{\text{Page}}108$

1.5.92 ¹H-NMR of benzyl (S)-(1-(benzylamino)-1-oxopropan-2-yl)carbamate (28) in d⁶- DMSO at 25 °C

 $_{Page}109$

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

1.5.93 ¹³C–NMR of benzyl (S)-(1-(benzylamino)-1-oxopropan-2-yl)carbamate (28) in d⁶⁻DMSO at 25 °C.

$_{Page}110$

1.5.94 ¹H-NMR of N-(2-(benzylamino)-2-oxoethyl)octanamide (29) in d-CDCl₃ at 25 °C

Page111

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

Department of Chemistry

1.5 X-ray of new compounds

1.5.1 X-ray data of (2-Iodobiphenyl-3-yl)boronic acid (5_A)

STRUCTURE REPORT

XCL Code: JUS1502

Date: 22 June 2015

Compound: $(2-Iodobiphenyl-3-yl)boronic acidFormula:<math>C_{12}H_{10}BIO_2$

Supervisor: R. M. Al-Zoubi, Jordan University of Science and Technology

Crystallographer: R. McDonald

Figure Legends

- **Figure 1.** Perspective view of the (2-iodobiphenyl-3-yl)boronic acid molecule showing the atom labelling scheme. Non-hydrogen atoms are represented by Gaussian ellipsoids at the 30% probability level. Hydrogen atoms are shown with arbitrarily small thermal parameters.
- **Figure 2.** Illustration of hydrogen-bonded interactions between adjacent (2-iodobiphenyl-3-yl)boronic acid molecules in the crystal lattice. Primed atoms are related to unprimed ones via the crystallographic symmetry operation (1+x, y, z). Double-primed atoms are related to unprimed ones via the crystallographic inversion center (0, 0, 0). The chain propagates in a direction parallel to the crystal unit cell's *a* axis.

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

List of Tables

- **Table 1.** Crystallographic Experimental Details
- **Table 2.** Atomic Coordinates and Equivalent Isotropic Displacement Parameters
- Table 3.
 Selected Interatomic Distances
- Table 4.
 Selected Interatomic Angles
- Table 5.
 Hydogen-Bonded Interactions
- **Table 6.**Torsional Angles
- **Table 7.** Anisotropic Displacement Parameters
- **Table 8.** Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

A. Crystal Data	
formula	$C_{12}H_{10}BIO_2$
formula weight	323.91
crystal dimensions (mm)	$0.27 \times 0.08 \times 0.02$
crystal system	monoclinic
space group	$P2_1/n$ (an alternate setting of $P2_1/c$ [No. 14])
unit cell parameters ^a	
<i>a</i> (Å)	4.9683 (12)
b (Å)	13.968 (3)
<i>c</i> (Å)	17.534 (4)
β (deg)	90.619 (3)
$V(Å^3)$	1216.8 (5)
Ζ	4
$\rho_{\text{calcd}} (\text{g cm}^{-3})$	1.768
$\mu \text{ (mm}^{-1}\text{)}$	2.612

 Table 1. Crystallographic Experimental Details

B. Data Collection and Refinement Conditions

diffractometer	Bruker PLATFORM/APEX II CCD ^b
radiation (λ [Å])	graphite-monochromated Mo K α (0.71073)
temperature (°C)	-80
scan type	ω scans (0.3°) (25 s exposures)
data collection 2θ limit (deg)	56.85
total data collected	10367 (-6 $\leq h \leq 6$, -18 $\leq k \leq 18$, -23 $\leq l \leq 23$)
independent reflections	$3014 \ (R_{\text{int}} = 0.0494)$
number of observed reflections (NO)	$2052 \ [F_0{}^2 \ge 2\sigma(F_0{}^2)]$
structure solution method	intrinsic phasing (SHELXT-2014 ^c)
refinement method	full-matrix least-squares on F^2 (SHELXL-2014 ^d)
absorption correction method	Gaussian integration (face-indexed)
range of transmission factors	0.9691–0.6365
data/restraints/parameters	3014 / 2 ^e / 153
goodness-of-fit (S) ^f [all data]	0.990
final <i>R</i> indices ^g	
$R_1 \left[F_0^2 \ge 2\sigma (F_0^2) \right]$	0.0361
wR_2 [all data]	0.0790
largest difference peak and hole	0.712 and –0.581 e Å ⁻³

*a*Obtained from least-squares refinement of 2092 reflections with $5.48^{\circ} < 2\theta < 41.30^{\circ}$.

^bPrograms for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.

(continued)

Page117

 Table 1. Crystallographic Experimental Details (continued)

^cSheldrick, G. M. Acta Crystallogr. 2015, A71, 3-8.

dSheldrick, G. M. Acta Crystallogr. 2015, C71, 3-8.

^eThe O1–H1O and O2–H2O distances were constrained to be 0.84(1) Å during refinement.

 ${}^{f}S = [\Sigma w(F_{o}{}^{2} - F_{c}{}^{2})^{2}/(n - p)]^{1/2} (n = \text{number of data; } p = \text{number of parameters varied; } w = [\sigma^{2}(F_{o}{}^{2}) + 0.0314P)^{2}]^{-1} \text{ where } P = [\text{Max}(F_{o}{}^{2}, 0) + 2F_{c}{}^{2}]/3).$

 $gR_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; \ wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^4)]^{1/2}.$

Atom	x	У	Z.	$U_{\rm eq}$, Å ²
Ι	0.29538(6)	0.18552(2)	0.21803(2)	0.05336(12)*
01	0.2153(5)	0.0143(2)	0.07543(16)	0.0482(7)*
O2	-0.2468(5)	-0.0022(2)	0.07963(16)	0.0498(7)*
C1	0.0750(7)	0.0516(2)	0.3382(2)	0.0380(8)*
C2	0.0932(6)	0.0633(2)	0.25977(19)	0.0357(8)*
C3	-0.0182(6)	-0.0018(2)	0.2075(2)	0.0364(8)*
C4	-0.1548(7)	-0.0802(3)	0.2376(2)	0.0450(9)*
C5	-0.1668(8)	-0.0959(3)	0.3146(2)	0.0508(10)*
C6	-0.0503(8)	-0.0304(3)	0.3645(2)	0.0471(9)*
C7	0.1707(7)	0.1225(2)	0.3958(2)	0.0406(8)*
C8	0.0370(10)	0.2085(3)	0.4051(3)	0.0637(13)*
C9	0.1198(11)	0.2723(3)	0.4619(3)	0.0742(14)*
C10	0.3315(10)	0.2510(3)	0.5083(3)	0.0672(13)*
C11	0.4635(10)	0.1668(3)	0.4996(3)	0.0685(13)*
C12	0.3848(8)	0.1024(3)	0.4437(2)	0.0553(11)*
В	-0.0102(8)	0.0055(3)	0.1186(2)	0.0360(9)*
H10	0.357(6)	0.009(3)	0.101(2)	0.090(18)
H2O	-0.223(10)	0.000(4)	0.0325(8)	0.10(2)

Table 2. Atomic Coordinates and Equivalent Isotropic Displacement Parameters

Anisotropically-refined atoms are marked with an asterisk (*). The form of the anisotropic displacement parameter is: $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})].$

Atom1	Atom2	Distance	Atom1	Atom2	Distance
Ι	C2	2.115(3)	C3	В	1.563(5)
01	В	1.365(5)	C4	C5	1.371(5)
01	H10	0.830(10) <i>a</i>	C5	C6	1.388(5)
O2	В	1.357(5)	C7	C8	1.383(5)
O2	H2O	0.836(10) <i>a</i>	C7	C12	1.377(5)
C1	C2	1.389(5)	C8	C9	1.394(6)
C1	C6	1.385(5)	C9	C10	1.356(7)
C1	C7	1.488(5)	C10	C11	1.356(6)
C2	C3	1.401(5)	C11	C12	1.384(6)
C3	C4	1.396(5)			

Table 3.	Selected 1	Interatomic	Distances ((Å))
----------	------------	-------------	-------------	-----	---

^aDistance constrained during refinement.

Atom1	Atom2	Atom3	Angle	Atom1	Atom2	Atom3	Angle
В	01	H1O	113(4) ^b	C1	C6	C5	121.5(4)
В	O2	H2O	$111(4)^{b}$	C1	C7	C8	120.5(3)
C2	C1	C6	117.5(3)	C1	C7	C12	121.2(3)
C2	C1	C7	124.7(3)	C8	C7	C12	118.2(4)
C6	C1	C7	117.7(3)	C7	C8	C9	120.1(4)
Ι	C2	C1	118.3(3)	C8	C9	C10	120.6(4)
Ι	C2	C3	118.9(2)	C9	C10	C11	119.7(4)
C1	C2	C3	122.8(3)	C10	C11	C12	120.6(4)
C2	C3	C4	116.9(3)	C7	C12	C11	120.7(4)
C2	C3	В	126.6(3)	01	В	O2	116.1(3)
C4	C3	В	116.5(3)	01	В	C3	126.1(3)
C3	C4	C5	121.7(3)	O2	В	C3	117.7(3)
C4	C5	C6	119.5(4)				

 Table 4.
 Selected Interatomic Angles (deg)

^bAngle includes O–H distance constrained during refinement.

Table 5.	Hydrogen-Bonded	Interactions
----------	-----------------	--------------

D–H····A	D–H (Å)	H…A (Å)	D…A (Å)	∠D–H…A (deg)
01–H10····O2 <i>a</i>	0.830(10) ^c	2.01(4)	2.683(3)	137(5)
O2−H2O…O1 ^b	0.836(10) ^c	1.904(14)	2.730(4)	170(5)

^{*a*}At 1+*x*, *y*, *z*. ^{*b*}At \overline{x} , \overline{y} , \overline{z} . ^{*c*}Distance constrained during refinement.

 Table 6.
 Torsional Angles (deg)

Atom1	Atom2	Atom3	Atom4	Angle	Atom	Atom2	Atom3	Atom4	Angle
C6	C1	C2	Ι	-177.9(3)	В	C3	C4	C5	177.6(3)
C6	C1	C2	C3	2.6(5)	C2	C3	В	01	55.5(5)
C7	C1	C2	Ι	4.6(4)	C2	C3	В	O2	-128.0(4)
C7	C1	C2	C3	-174.9(3)	C4	C3	В	01	-125.8(4)
C2	C1	C6	C5	-3.5(5)	C4	C3	В	O2	50.7(5)
C7	C1	C6	C5	174.2(3)	C3	C4	C5	C6	2.7(6)
C2	C1	C7	C8	70.4(5)	C4	C5	C6	C1	0.9(6)
C2	C1	C7	C12	-113.0(4)	C1	C7	C8	C9	176.7(4)
C6	C1	C7	C8	-107.1(4)	C12	C7	C8	C9	0.0(7)
C6	C1	C7	C12	69.5(5)	C1	C7	C12	C11	-176.7(4)
Ι	C2	C3	C4	-178.6(2)	C8	C7	C12	C11	0.1(6)
Ι	C2	C3	В	0.1(4)	C7	C8	C9	C10	0.1(8)
C1	C2	C3	C4	0.8(5)	C8	C9	C10	C11	-0.2(8)
C1	C2	C3	В	179.5(3)	C9	C10	C11	C12	0.2(8)
C2	C3	C4	C5	-3.5(5)	C10	C11	C12	C7	-0.1(7)

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Ι	0.05845(19)	0.05436(18)	0.04720(18)	0.00588(13)	-0.00248(13)	-0.01494(13)
01	0.0210(13)	0.0824(19)	0.0413(16)	-0.0040(14)	-0.0021(12)	-0.0025(12)
O2	0.0217(12)	0.090(2)	0.0377(17)	-0.0062(15)	-0.0055(12)	0.0008(12)
C1	0.0373(19)	0.0400(19)	0.037(2)	-0.0001(16)	-0.0003(16)	0.0055(15)
C2	0.0296(18)	0.0411(19)	0.036(2)	0.0032(16)	-0.0029(15)	0.0019(14)
C3	0.0269(17)	0.047(2)	0.035(2)	-0.0006(16)	-0.0008(15)	0.0037(15)
C4	0.045(2)	0.048(2)	0.042(2)	-0.0077(18)	-0.0012(18)	-0.0052(17)
C5	0.061(3)	0.042(2)	0.050(3)	-0.0001(18)	0.009(2)	-0.0069(18)
C6	0.059(3)	0.045(2)	0.037(2)	0.0039(17)	0.0027(19)	0.0025(18)
C7	0.045(2)	0.043(2)	0.035(2)	0.0024(16)	-0.0007(17)	-0.0008(16)
C8	0.072(3)	0.049(2)	0.070(3)	-0.003(2)	-0.017(3)	0.008(2)
C9	0.097(4)	0.051(3)	0.075(4)	-0.023(3)	-0.006(3)	0.003(3)
C10	0.089(4)	0.062(3)	0.051(3)	-0.013(2)	-0.006(3)	-0.017(3)
C11	0.065(3)	0.093(4)	0.047(3)	-0.006(2)	-0.013(2)	-0.002(3)
C12	0.057(3)	0.059(2)	0.049(3)	-0.003(2)	-0.006(2)	0.005(2)
В	0.027(2)	0.044(2)	0.037(2)	-0.0047(18)	-0.0009(17)	0.0036(16)

Table 7. Anisotropic Displacement Parameters $(U_{ij}, Å^2)$

The form of the anisotropic displacement parameter is:

 $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})]$

Atom	X	У	z	$U_{\rm eq},{ m \AA}^2$
H4	-0.2416	-0.1238	0.2038	0.054
H5	-0.2542	-0.1513	0.3338	0.061
H6	-0.0566	-0.0421	0.4178	0.056
H8	-0.1114	0.2241	0.3729	0.076
H9	0.0270	0.3312	0.4680	0.089
H10	0.3871	0.2949	0.5467	0.081
H11	0.6115	0.1518	0.5322	0.082
H12	0.4796	0.0438	0.4382	0.066

|--|

1.5.2 X-ray data of (2-Iodo-5-methoxybiphenyl-3-yl)boronic acid (14_A)

STRUCTURE REPORT

XCL Code:	JUS1511	Date:	11 December 2015
Compound: Formula:	$(2-Iodo-5-methoxybiphenyl-3-yl)boroz C_{13}H_{12}BIO_3$	nic acid	
Supervisor:	R. M. Al-Zoubi, Jordan University of	Science	and Technology
Crystallographer:	R. McDonald		

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

Figure Legends

- **Figure 1.** Perspective view of the (2-iodo-5-methoxybiphenyl-3-yl)boronic acid molecule showing the atom labelling scheme. Non-hydrogen atoms are represented by Gaussian ellipsoids at the 30% probability level. Hydrogen atoms are shown with arbitrarily small thermal parameters.
- **Figure 2.** Illustration of hydrogen-bonded interactions (shown by dotted lines) between adjacent molecules in the crystal lattice. Primed atoms are related to unprimed ones via the crystallographic symmetry operation (x, 1+y, z) (translation in a direction parallel to the crystallographic unit's cell's *b* axis). Double-primed atoms are related to unprimed ones via the crystallographic inversion center (1/4, 1/4, 1/4).

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

List of Tables

- **Table 1.** Crystallographic Experimental Details
- **Table 2.** Atomic Coordinates and Equivalent Isotropic Displacement Parameters
- Table 3.
 Selected Interatomic Distances
- Table 4.
 Selected Interatomic Angles
- Table 5.
 Hydrogen-Bonded Interactions
- Table 6.Torsional Angles
- **Table 7.** Anisotropic Displacement Parameters
- **Table 8.** Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

A. Crystal Data	
formula	C ₁₃ H ₁₂ BIO ₃
formula weight	353.94
crystal dimensions (mm)	$0.56 \times 0.06 \times 0.03$
crystal system	monoclinic
space group	I2/a (an alternate setting of $C2/c$ [No. 15])
unit cell parameters ^a	
<i>a</i> (Å)	19.7878 (14)
b (Å)	5.0588 (4)
<i>c</i> (Å)	27.336 (2)
β (deg)	93.9416 (10)
$V(Å^3)$	2729.9 (4)
Ζ	8
$\rho_{\text{calcd}} (\text{g cm}^{-3})$	1.722
$\mu (\mathrm{mm}^{-1})$	2.342

Table 1. Crystallographic Experimental Details

B. Data Collection and Refinement Conditions

diffractometer	Bruker PLATFORM/APEX II CCD ^b
radiation (λ [Å])	graphite-monochromated Mo K α (0.71073)
temperature (°C)	-80
scan type	ω scans (0.3°) (25 s exposures)
data collection 2θ limit (deg)	55.14
total data collected	22880 (-25 $\leq h \leq$ 25, -6 $\leq k \leq$ 6, -35 $\leq l \leq$ 35)
independent reflections	$3157 (R_{\text{int}} = 0.0370)$
number of observed reflections (NO)	2747 $[F_0^2 \ge 2\sigma(F_0^2)]$
structure solution method	Patterson/structure expansion (<i>DIRDIF</i> -2008 ^c)
refinement method	full-matrix least-squares on F^2 (SHELXL-2014 ^d)
absorption correction method	multi-scan (TWINABS)
range of transmission factors	0.7967–0.6605
data/restraints/parameters	3157 / 2 ^e / 173
goodness-of-fit (S) ^f [all data]	1.033
final <i>R</i> indices ^g	
$R_1 \left[F_0^2 \ge 2\sigma(F_0^2) \right]$	0.0264
wR_2 [all data]	0.0625
largest difference peak and hole	0.976 and –0.482 e Å ⁻³

^{*a*}Obtained from least-squares refinement of 8347 reflections with $4.92^{\circ} < 2\theta < 55.12^{\circ}$.

(continued)

Table 1. Crystallographic Experimental Details (continued)

- ^bPrograms for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker. The crystal used for data collection was found to display non-merohedral twinning. Both components of the twin were indexed with the program *CELL_NOW* (Bruker AXS Inc., Madison, WI, 2004). The second twin component can be related to the first component by 180° rotation about the [1 0 0] axis in both real space and reciprocal space. Integrated intensities for the reflections from the two components were written into a *SHELXL-2014* HKLF 5 reflection file with the data integration program *SAINT* (version 8.34A), using all reflection data (exactly overlapped, partially overlapped and non-overlapped). The refined value of the twin fraction (*SHELXL-2014* BASF parameter) was 0.1934(9).
- ^cBeurskens, P. T.; Beurskens, G.; de Gelder, R.; Smits, J. M. M.; Garcia-Granda, S.; Gould, R. O. (2008). The *DIRDIF-2008* program system. Crystallography Laboratory, Radboud University Nijmegen, The Netherlands.
- dSheldrick, G. M. Acta Crystallogr. 2015, C71, 3-8.
- ^eThe O1–H1O and O2–H2O distances were constrained to be 0.84(1) Å during refinement.
- ${}^{f}S = [\Sigma w(F_0{}^2 F_c{}^2)^2/(n p)]^{1/2} (n = \text{number of data; } p = \text{number of parameters varied; } w = [\sigma^2(F_0{}^2) + (0.0303P)^2 + 4.1548P]^{-1} \text{ where } P = [\text{Max}(F_0{}^2, 0) + 2F_c{}^2]/3).$

 ${}^{g}R_{1} = \Sigma ||F_{\rm o}| - |F_{\rm c}|| / \Sigma |F_{\rm o}|; \ wR_{2} = [\Sigma w (F_{\rm o}^{2} - F_{\rm c}^{2})^{2} / \Sigma w (F_{\rm o}^{4})]^{1/2}.$

Atom	x	у	Z.	$U_{\rm eq}$, Å ²
Ι	0.02560(2)	0.63092(4)	0.20447(2)	0.02817(7)*
O1	0.19356(12)	0.4661(4)	0.21985(10)	0.0357(6)*
O2	0.19887(13)	0.0117(5)	0.21119(10)	0.0404(6)*
O3	0.09875(13)	-0.1070(5)	0.03209(9)	0.0425(6)*
C1	0.00555(16)	0.3339(6)	0.10785(11)	0.0264(6)*
C2	0.05223(15)	0.3677(5)	0.14882(11)	0.0236(6)*
C3	0.11399(15)	0.2328(6)	0.15281(11)	0.0228(6)*
C4	0.12944(15)	0.0651(6)	0.11418(12)	0.0265(6)*
C5	0.08609(16)	0.0442(6)	0.07214(12)	0.0294(7)*
C6	0.02471(16)	0.1790(6)	0.06936(12)	0.0305(7)*
C7	-0.06452(16)	0.4419(7)	0.10540(12)	0.0314(7)*
C8	-0.1113(2)	0.3375(8)	0.13557(16)	0.0482(10)*
C9	-0.1774(2)	0.4298(11)	0.1333(2)	0.0665(14)*
C10	-0.1961(2)	0.6293(10)	0.1011(2)	0.0664(15)*
C11	-0.1508(2)	0.7343(9)	0.07061(19)	0.0600(13)*
C12	-0.08481(19)	0.6378(7)	0.07230(15)	0.0417(9)*
C13	0.1575(2)	-0.2689(9)	0.03591(16)	0.0515(11)*
В	0.16917(18)	0.2426(7)	0.19709(13)	0.0268(7)*
H1O	0.181(2)	0.610(5)	0.2080(16)	0.063(15)
H2O	0.2283(17)	0.026(9)	0.2345(11)	0.065(15)

 Table 2.
 Atomic Coordinates and Equivalent Isotropic Displacement Parameters

Anisotropically-refined atoms are marked with an asterisk (*). The form of the anisotropic displacement parameter is: $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})].$

Atom1	Atom2	Distance	Atom1	Atom2	Distance
Ι	C2	2.116(3)	C3	В	1.574(4)
01	В	1.363(4)	C4	C5	1.390(4)
O2	В	1.352(4)	C5	C6	1.390(5)
O3	C5	1.373(4)	C7	C8	1.386(5)
03	C13	1.420(4)	C7	C12	1.383(5)
C1	C2	1.412(4)	C8	C9	1.385(6)
C1	C6	1.386(4)	C9	C10	1.373(7)
C1	C7	1.488(4)	C10	C11	1.373(7)
C2	C3	1.397(4)	C11	C12	1.391(6)
C3	C4	1.404(4)			

Table 3.	Selected	Interatomic	Distances	(Å))
----------	----------	-------------	-----------	-----	---

 Table 4.
 Selected Interatomic Angles (deg)

Atom1	Atom2	Atom3	Angle	Atom1	Atom2	Atom3	Angle
C5	O3	C13	117.1(3)	C4	C5	C6	119.7(3)
C2	C1	C6	118.2(3)	C1	C6	C5	121.3(3)
C2	C1	C7	123.2(3)	C1	C7	C8	119.5(3)
C6	C1	C7	118.4(3)	C1	C7	C12	121.4(3)
Ι	C2	C1	117.7(2)	C8	C7	C12	119.1(3)
Ι	C2	C3	120.7(2)	C7	C8	C9	120.8(4)
C1	C2	C3	121.6(3)	C8	C9	C10	119.3(5)
C2	C3	C4	118.1(3)	C9	C10	C11	120.9(4)
C2	C3	В	127.0(3)	C10	C11	C12	119.7(4)
C4	C3	В	115.0(3)	C7	C12	C11	120.2(4)
C3	C4	C5	120.9(3)	01	В	O2	117.0(3)
O3	C5	C4	124.5(3)	01	В	C3	125.6(3)
03	C5	C6	115.9(3)	O2	В	C3	117.2(3)

D–H···A	D–H (Å)	H…A (Å)	D…A (Å)	∠D–H…A (deg)
O1–H1O····O2 <i>a</i>	0.830(10) ^c	2.06(3)	2.773(3)	143(4)
O2−H2O…O1 ^b	0.836(10) ^c	1.920(13)	2.747(3)	170(5)

Table 5. Hydrogen-Bonded Interactions

^{*a*}At *x*, 1+*y*, *z*. ^{*b*}At 1/2-x, 1/2-y, 1/2-z. ^{*c*}Distance constrained during refinement.

 Table 6.
 Torsional Angles (deg)

Atom1	Atom2	Atom3	Atom4	Angle	Atom1	Atom2	Atom3	Atom4	Angle
C13	O3	C5	C4	5.5(5)	В	C3	C4	C5	-178.0(3)
C13	O3	C5	C6	-173.4(3)	C2	C3	В	01	-47.4(5)
C6	C1	C2	Ι	174.8(2)	C2	C3	В	O2	138.2(3)
C6	C1	C2	C3	-5.2(4)	C4	C3	В	01	133.8(3)
C7	C1	C2	Ι	-9.2(4)	C4	C3	В	O2	-40.5(4)
C7	C1	C2	C3	170.8(3)	C3	C4	C5	O3	177.4(3)
C2	C1	C6	C5	4.6(5)	C3	C4	C5	C6	-3.8(5)
C7	C1	C6	C5	-171.6(3)	O3	C5	C6	C1	178.7(3)
C2	C1	C7	C8	-68.4(4)	C4	C5	C6	C1	-0.2(5)
C2	C1	C7	C12	114.1(4)	C1	C7	C8	C9	-178.5(4)
C6	C1	C7	C8	107.5(4)	C12	C7	C8	C9	-0.9(6)
C6	C1	C7	C12	-70.0(4)	C1	C7	C12	C11	179.7(3)
Ι	C2	C3	C4	-178.6(2)	C8	C7	C12	C11	2.2(6)
Ι	C2	C3	В	2.6(4)	C7	C8	C9	C10	-0.8(7)
C1	C2	C3	C4	1.4(4)	C8	C9	C10	C11	1.3(7)
C1	C2	C3	В	-177.4(3)	C9	C10	C11	C12	-0.1(7)
C2	C3	C4	C5	3.2(5)	C10	C11	C12	C7	-1.7(6)

Atom	U_{11}	U_{22}	U ₃₃	U_{23}	<i>U</i> ₁₃	U_{12}
Ι	0.03153(11)	0.02701(10)	0.02615(10)	-0.00192(8)	0.00338(8)	-0.00053(9)
01	0.0363(13)	0.0208(11)	0.0474(15)	-0.0045(10)	-0.0148(11)	0.0009(10)
O2	0.0431(14)	0.0196(11)	0.0550(16)	0.0050(11)	-0.0223(13)	0.0000(10)
O3	0.0358(14)	0.0569(16)	0.0337(13)	-0.0186(12)	-0.0057(10)	0.0098(12)
C1	0.0201(15)	0.0295(15)	0.0290(15)	0.0013(12)	-0.0019(12)	-0.0020(12)
C2	0.0251(15)	0.0210(13)	0.0247(14)	0.0004(12)	0.0003(11)	-0.0040(12)
C3	0.0236(15)	0.0193(13)	0.0249(15)	0.0026(12)	-0.0027(12)	-0.0046(12)
C4	0.0211(15)	0.0271(14)	0.0309(16)	-0.0012(12)	-0.0006(12)	0.0010(12)
C5	0.0283(16)	0.0323(16)	0.0272(16)	-0.0081(13)	0.0000(13)	-0.0027(13)
C6	0.0236(16)	0.0391(18)	0.0282(16)	-0.0043(13)	-0.0031(12)	-0.0023(13)
C7	0.0221(15)	0.0367(17)	0.0348(18)	-0.0081(14)	-0.0024(13)	0.0007(13)
C8	0.033(2)	0.060(3)	0.052(2)	-0.001(2)	0.0053(17)	-0.0013(18)
C9	0.031(2)	0.088(4)	0.083(4)	-0.021(3)	0.016(2)	-0.005(2)
C10	0.031(2)	0.069(3)	0.098(4)	-0.036(3)	-0.008(2)	0.017(2)
C11	0.049(3)	0.049(2)	0.078(3)	-0.010(2)	-0.023(2)	0.020(2)
C12	0.036(2)	0.0376(19)	0.050(2)	-0.0021(17)	-0.0089(16)	0.0040(16)
C13	0.043(2)	0.057(2)	0.053(2)	-0.030(2)	-0.0047(19)	0.015(2)
В	0.0273(17)	0.0230(16)	0.0293(19)	0.0003(14)	-0.0030(14)	-0.0019(14)

Table 7.	Anisotropic Displacement Parameters	$(U_{ij}, Å^2)$
----------	-------------------------------------	-----------------

The form of the anisotropic displacement parameter is:

 $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})]$

Atom	x	У	Z	$U_{\rm eq},{\rm \AA}^2$
H4	0.1701	-0.0354	0.1168	0.032
H6	-0.0047	0.1645	0.0405	0.037
H8	-0.0979	0.2011	0.1581	0.058
H9	-0.2093	0.3557	0.1537	0.080
H10	-0.2411	0.6956	0.0999	0.080
H11	-0.1643	0.8722	0.0485	0.072
H12	-0.0536	0.7066	0.0506	0.050
H13A	0.1979	-0.1575	0.0412	0.062
H13B	0.1603	-0.3702	0.0056	0.062
H13C	0.1549	-0.3909	0.0636	0.062

 Table 8. Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

1.5.3 X-ray data of (2-Iodo-4',5-dimethoxybiphenyl-3-yl)boronic acid (**19**_A)

STRUCTURE REPORT

XCL Code:	JUS1508	Date:	11 December 2015
Compound: Formula:	(2-Iodo-4',5-dimethoxybiphenyl-3-yl) $C_{14}H_{14}BIO_4$	boronic	acid
Supervisor:	R. M. Al-Zoubi, Jordan University of Science and Technology		
Crystallographer:	R. McDonald		

Figure Legends

- **Figure 1.** Perspective view of the (2-iodo-4',5-dimethoxybiphenyl-3-yl)boronic acid molecule showing the atom labelling scheme. Non-hydrogen atoms are represented by Gaussian ellipsoids at the 30% probability level. Hydrogen atoms are shown with arbitrarily small thermal parameters.
- **Figure 2.** Illustration of hydrogen-bonded interactions (shown by dotted lines) between adjacent molecules in the crystal lattice. Primed atoms are related to unprimed ones via the crystallographic inversion center (1, 1/2, 0). Double-primed atoms are related to unprimed ones via the crystallographic inversion center (1/2, 0, 0).

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

List of Tables

- **Table 1.** Crystallographic Experimental Details
- Table 2.
 Atomic Coordinates and Equivalent Isotropic Displacement Parameters
- Table 3.
 Selected Interatomic Distances
- Table 4.
 Selected Interatomic Angles
- Table 5.
 Hydrogen-Bonded Interactions
- Table 6.Torsional Angles
- Table 7.
 Anisotropic Displacement Parameters
- **Table 8.** Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

A. Crystal Data	
formula	$C_{14}H_{14}BIO_4$
formula weight	383.96
crystal dimensions (mm)	$0.17 \times 0.14 \times 0.04$
crystal system	triclinic
space group	<i>P</i> 1 (No. 2)
unit cell parameters ^a	
<i>a</i> (Å)	7.4048 (3)
<i>b</i> (Å)	9.6801 (4)
<i>c</i> (Å)	10.5728 (4)
α (deg)	101.6750 (4)
β (deg)	90.6702 (5)
$\gamma(\text{deg})$	105.7630 (4)
$V(Å^3)$	712.47 (5)
Ζ	2
$\rho_{\text{calcd}} (\text{g cm}^{-3})$	1.790
$\mu (\mathrm{mm}^{-1})$	2.256

B. Data Collection and Refinement Conditions

diffractometer	Bruker PLATFORM/APEX II CCD ^b
radiation (λ [Å])	graphite-monochromated Mo K α (0.71073)
temperature (°C)	-100
scan type	ω scans (0.3°) (30 s exposures)
data collection 2θ limit (deg)	56.69
total data collected	6867 (-9 $\leq h \leq 9$, -12 $\leq k \leq 12$, -14 $\leq l \leq 14$)
independent reflections	$3500 \ (R_{\text{int}} = 0.0144)$
number of observed reflections (NO)	$3235 [F_0^2 \ge 2\sigma(F_0^2)]$
structure solution method	Patterson/structure expansion (DIRDIF-2008 ^c)
refinement method	full-matrix least-squares on F^2 (SHELXL-2014 ^d)
absorption correction method	Gaussian integration (face-indexed)
range of transmission factors	0.9660-0.7538
data/restraints/parameters	3500 / 2 ^e / 191
goodness-of-fit (S) ^f [all data]	1.070
final <i>R</i> indices ^g	
$R_1 \left[F_0^2 \ge 2\sigma (F_0^2) \right]$	0.0208
wR_2 [all data]	0.0499
largest difference peak and hole	0.924 and –0.445 e Å ⁻³

*a*Obtained from least-squares refinement of 7784 reflections with $4.48^{\circ} < 2\theta < 56.14^{\circ}$.

(continued)

Table 1. Crystallographic Experimental Details (continued)

- ^bPrograms for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.
- ^cBeurskens, P. T.; Beurskens, G.; de Gelder, R.; Smits, J. M. M.; Garcia-Granda, S.; Gould, R. O. (2008). The *DIRDIF-2008* program system. Crystallography Laboratory, Radboud University Nijmegen, The Netherlands.

dSheldrick, G. M. Acta Crystallogr. 2015, C71, 3-8.

eThe O1–H1O and O2–H2O distances were constrained to an idealized distance of 0.84(1) Å.

 ${}^{f}S = [\Sigma w(F_0{}^2 - F_c{}^2)^2/(n - p)]^{1/2} (n = \text{number of data; } p = \text{number of parameters varied; } w = [\sigma^2(F_0{}^2) + (0.0229P)^2 + 0.3304P]^{-1} \text{ where } P = [\text{Max}(F_0{}^2, 0) + 2F_c{}^2]/3).$

 $gR_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; \ wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^4)]^{1/2}.$

Atom	x	У	z	$U_{\rm eq},{ m \AA}^2$
Ι	0.59205(2)	0.46716(2)	0.29533(2)	0.03040(5)*
O1	1.0144(2)	0.39467(17)	0.13198(15)	0.0309(3)*
O2	0.7784(2)	0.37270(16)	-0.02707(14)	0.0272(3)*
03	0.58086(19)	-0.19229(14)	0.12745(13)	0.0241(3)*
O4	-0.0925(2)	0.24448(16)	0.63368(14)	0.0284(3)*
C1	0.4447(3)	0.1335(2)	0.27893(17)	0.0195(4)*
C2	0.5718(3)	0.2419(2)	0.22811(17)	0.0195(4)*
C3	0.7016(3)	0.2085(2)	0.14057(18)	0.0201(4)*
C4	0.7085(3)	0.0626(2)	0.10565(18)	0.0207(4)*
C5	0.5866(3)	-0.0458(2)	0.15679(17)	0.0198(4)*
C6	0.4550(3)	-0.0106(2)	0.24106(18)	0.0210(4)*
C7	0.3010(3)	0.1641(2)	0.37029(18)	0.0203(4)*
C8	0.1675(3)	0.2303(2)	0.33859(18)	0.0243(4)*
C9	0.0323(3)	0.2582(2)	0.42277(19)	0.0243(4)*
C10	0.0313(3)	0.2195(2)	0.54251(18)	0.0213(4)*
C11	0.1613(3)	0.1503(2)	0.57504(18)	0.0236(4)*
C12	0.2942(3)	0.1224(2)	0.49017(18)	0.0217(4)*
C13	0.7291(3)	-0.2329(2)	0.0558(2)	0.0304(4)*
C14	-0.2118(3)	0.3307(3)	0.6094(2)	0.0330(5)*
В	0.8383(3)	0.3329(2)	0.0798(2)	0.0219(4)*
H1O	1.078(4)	0.463(2)	0.100(3)	0.059(9)
H2O	0.672(2)	0.325(3)	-0.061(3)	0.047(8)

Table 2. Atomic Coordinates and Equivalent Isotropic Displacement Parameters

Anisotropically-refined atoms are marked with an asterisk (*). The form of the anisotropic displacement parameter is: $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})].$

Atom1	Atom2	Distance	Atom1	Atom2	Distance
Ι	C2	2.1157(18)	C3	C4	1.401(3)
01	В	1.337(3)	C3	В	1.598(3)
O2	В	1.371(3)	C4	C5	1.391(2)
O3	C5	1.378(2)	C5	C6	1.392(3)
O3	C13	1.437(2)	C7	C8	1.386(3)
O4	C10	1.369(2)	C7	C12	1.403(3)
O4	C14	1.423(2)	C8	C9	1.392(3)
C1	C2	1.407(2)	C9	C10	1.390(3)
C1	C6	1.395(3)	C10	C11	1.390(3)
C1	C7	1.494(3)	C11	C12	1.383(3)
C2	C3	1.398(3)			

Table 3.	Selected	Interatomic	Distances	(Å))
----------	----------	-------------	-----------	-----	---

Table 4.	Selected	Interatomic	Angles	(deg)
----------	----------	-------------	--------	-------

Atom1	Atom2	Atom3	Angle	Atom1	Atom2	Atom3	Angle
C5	O3	C13	117.85(15)	C1	C6	C5	121.28(17)
C10	O4	C14	117.06(16)	C1	C7	C8	121.55(16)
C2	C1	C6	117.43(17)	C1	C7	C12	120.51(16)
C2	C1	C7	123.91(17)	C8	C7	C12	117.91(17)
C6	C1	C7	118.66(16)	C7	C8	C9	121.91(17)
Ι	C2	C1	120.85(13)	C8	C9	C10	119.22(18)
Ι	C2	C3	116.64(13)	O4	C10	C9	124.15(17)
C1	C2	C3	122.26(17)	O4	C10	C11	116.09(17)
C2	C3	C4	118.57(16)	C9	C10	C11	119.76(17)
C2	C3	В	121.14(16)	C10	C11	C12	120.41(17)
C4	C3	В	120.29(16)	C7	C12	C11	120.75(17)
C3	C4	C5	120.07(17)	01	В	O2	120.18(18)
03	C5	C4	124.49(17)	01	В	C3	119.14(17)
03	C5	C6	115.15(16)	O2	В	C3	120.65(17)
C4	C5	C6	120.34(17)				

D–H···A	D–H (Å)	H…A (Å)	D····A (Å)	∠D–H…A (deg)
O1–H1O····O2 <i>a</i>	0.832(10) ^c	1.966(10)	2.7979(19)	178(3)
O2–H2O…O3 ^b	$0.832(10)^{c}$	1.987(11)	2.813(2)	172(3)

^{*a*}At 2–*x*, 1–*y*, \overline{z} . ^{*b*}At 1–*x*, \overline{y} , \overline{z} . ^{*c*}Distance constrained during refinement.

Table 6. Torsional Angles (deg)

Atom1	Atom2	Atom3	Atom4	Angle	Atom1	Atom2	Atom3	Atom4	Angle
C13	O3	C5	C4	10.3(3)	В	C3	C4	C5	-178.66(17)
C13	O3	C5	C6	-171.52(17)	C2	C3	В	01	97.9(2)
C14	O4	C10	C9	-7.7(3)	C2	C3	В	O2	-84.2(2)
C14	O4	C10	C11	172.62(18)	C4	C3	В	01	-82.8(2)
C6	C1	C2	Ι	-172.62(13)	C4	C3	В	O2	95.1(2)
C6	C1	C2	C3	1.5(3)	C3	C4	C5	O3	179.24(17)
C7	C1	C2	Ι	7.4(2)	C3	C4	C5	C6	1.1(3)
C7	C1	C2	C3	-178.55(17)	O3	C5	C6	C1	-179.92(16)
C2	C1	C6	C5	0.3(3)	C4	C5	C6	C1	-1.6(3)
C7	C1	C6	C5	-179.63(17)	C1	C7	C8	C9	179.51(18)
C2	C1	C7	C8	57.2(3)	C12	C7	C8	C9	1.3(3)
C2	C1	C7	C12	-124.6(2)	C1	C7	C12	C11	-179.94(17)
C6	C1	C7	C8	-122.8(2)	C8	C7	C12	C11	-1.7(3)
C6	C1	C7	C12	55.3(2)	C7	C8	C9	C10	0.4(3)
Ι	C2	C3	C4	172.36(13)	C8	C9	C10	O4	178.62(18)
Ι	C2	C3	В	-8.3(2)	C8	C9	C10	C11	-1.7(3)
C1	C2	C3	C4	-2.0(3)	O4	C10	C11	C12	-178.98(18)
C1	C2	C3	В	177.33(17)	C9	C10	C11	C12	1.4(3)
C2	C3	C4	C5	0.6(3)	C10	C11	C12	C7	0.4(3)

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Ι	0.03558(9)	0.01838(8)	0.03727(9)	0.00611(5)	0.01223(6)	0.00709(6)
01	0.0231(7)	0.0318(8)	0.0393(8)	0.0206(7)	0.0022(6)	0.0006(6)
O2	0.0253(7)	0.0275(8)	0.0280(7)	0.0145(6)	0.0023(6)	-0.0004(6)
O3	0.0266(7)	0.0177(7)	0.0293(7)	0.0066(5)	0.0078(6)	0.0073(6)
O4	0.0309(8)	0.0304(8)	0.0300(7)	0.0118(6)	0.0140(6)	0.0141(6)
C1	0.0191(8)	0.0210(9)	0.0194(8)	0.0079(7)	0.0024(7)	0.0046(7)
C2	0.0203(9)	0.0163(9)	0.0216(9)	0.0057(7)	0.0025(7)	0.0034(7)
C3	0.0202(9)	0.0183(9)	0.0218(9)	0.0076(7)	0.0025(7)	0.0033(7)
C4	0.0194(9)	0.0227(9)	0.0213(9)	0.0071(7)	0.0060(7)	0.0062(7)
C5	0.0237(9)	0.0165(9)	0.0198(8)	0.0049(7)	0.0008(7)	0.0056(7)
C6	0.0207(9)	0.0194(9)	0.0232(9)	0.0097(7)	0.0037(7)	0.0023(7)
C7	0.0207(9)	0.0195(9)	0.0214(9)	0.0069(7)	0.0046(7)	0.0047(7)
C8	0.0264(10)	0.0284(10)	0.0214(9)	0.0101(8)	0.0046(7)	0.0097(8)
C9	0.0220(9)	0.0265(10)	0.0285(10)	0.0113(8)	0.0040(7)	0.0092(8)
C10	0.0207(9)	0.0171(9)	0.0248(9)	0.0045(7)	0.0059(7)	0.0030(7)
C11	0.0284(10)	0.0235(10)	0.0205(9)	0.0081(7)	0.0041(7)	0.0073(8)
C12	0.0219(9)	0.0206(9)	0.0246(9)	0.0083(7)	0.0023(7)	0.0069(7)
C13	0.0360(11)	0.0270(11)	0.0326(11)	0.0077(9)	0.0109(9)	0.0150(9)
C14	0.0313(11)	0.0325(12)	0.0415(12)	0.0118(10)	0.0141(9)	0.0161(9)
В	0.0237(10)	0.0197(10)	0.0248(10)	0.0079(8)	0.0091(8)	0.0075(8)

Table 7. An	nisotropic Dis	placement	Parameters ((U_{ii}, I)	Å ²)
-------------	----------------	-----------	--------------	---------------	------------------

The form of the anisotropic displacement parameter is: $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})]$

Atom	X	у	Z.	$U_{\rm eq},{ m \AA}^2$
H4	0.7966	0.0377	0.0470	0.025
H6	0.3705	-0.0863	0.2734	0.025
H8	0.1684	0.2574	0.2571	0.029
H9	-0.0583	0.3031	0.3987	0.029
H11	0.1590	0.1220	0.6561	0.028
H12	0.3819	0.0744	0.5133	0.026
H13A	0.8511	-0.1756	0.1007	0.036
H13B	0.7223	-0.2128	-0.0311	0.036
H13C	0.7149	-0.3378	0.0488	0.036
H14A	-0.2948	0.2795	0.5314	0.040
H14B	-0.1349	0.4260	0.5966	0.040
H14C	-0.2879	0.3460	0.6834	0.040

Table 8. Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

1.5.4 X-ray data of (2-Iodo-5-methoxy-4'-phenoxybiphenyl-3-yl)boronic acid (21_A)

STRUCTURE REPORT

XCL Code:	JUS1509	Date:	11 December 2015
Compound: Formula:	(2-Iodo-5-methoxy-4'-phenoxybiphen $C_{19}H_{16}BIO_4$	yl-3-yl)	poronic acid
Supervisor: Crystallographer:	R. M. Al-Zoubi, Jordan University of R. McDonald	Science	and Technology

Figure Legends

- **Figure 1.** Perspective view of the (2-iodo-5-methoxy-4'-phenoxybiphenyl-3-yl)boronic acid molecule showing the atom labelling scheme. Non-hydrogen atoms are represented by Gaussian ellipsoids at the 30% probability level. Hydrogen atoms are shown with arbitrarily small thermal parameters.
- **Figure 2.** Illustration of hydrogen-bonded interactions (shown by dotted lines) between adjacent molecules in the crystal lattice. Primed atoms are related to unprimed ones via the crystallographic inversion center (1/2, 1, 1/2). Double-primed atoms are related to unprimed ones via the crystallographic symmetry operation (1+x, y, z) (translation in a direction parallel to the crystallographic unit's cell's *a* axis).

List of Tables

- **Table 1.** Crystallographic Experimental Details
- **Table 2.** Atomic Coordinates and Equivalent Isotropic Displacement Parameters
- Table 3.
 Selected Interatomic Distances
- Table 4.
 Selected Interatomic Angles
- Table 5.
 Hydrogen-Bonded Interactions
- Table 6.Torsional Angles
- Table 7.
 Anisotropic Displacement Parameters
- **Table 8.** Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

A. Crystal Data	
formula	C ₁₉ H ₁₆ BIO ₄
formula weight	446.03
crystal dimensions (mm)	$0.21 \times 0.05 \times 0.02$
crystal system	triclinic
space group	$P\overline{1}$ (No. 2)
unit cell parameters ^a	
<i>a</i> (Å)	5.1433 (2)
<i>b</i> (Å)	13.2175 (4)
<i>c</i> (Å)	14.1071 (4)
α (deg)	114.1398 (17)
β (deg)	94.4519 (16)
$\gamma(\text{deg})$	93.3392 (16)
$V(Å^3)$	868.24 (5)
Ζ	2
$\rho_{\text{calcd}} (\text{g cm}^{-3})$	1.706
$\mu (\mathrm{mm}^{-1})$	14.66

B. Data Collection and Refinement Conditions

diffractometer	Bruker D8/APEX II CCD ^b
radiation (λ [Å])	Cu K α (1.54178) (microfocus source)
temperature (°C)	-100
scan type	ω and ϕ scans (1.0°) (5 s exposures)
data collection 2θ limit (deg)	147.89
total data collected	6177 (-6 $\leq h \leq 6$, -16 $\leq k \leq 16$, -17 $\leq l \leq 17$)
independent reflections	$3396 (R_{\text{int}} = 0.0382)$
number of observed reflections (NO)	3147 $[F_0^2 \ge 2\sigma(F_0^2)]$
structure solution method	intrinsic phasing (SHELXT-2014 ^c)
refinement method	full-matrix least-squares on F^2 (SHELXL-2014 ^d)
absorption correction method	Gaussian integration (face-indexed)
range of transmission factors	0.8683–0.2320
data/restraints/parameters	3396 / 2 ^e / 235
goodness-of-fit (S) ^f [all data]	0.998
final <i>R</i> indices ^g	
$R_1 \left[F_0^2 \ge 2\sigma (F_0^2) \right]$	0.0252
wR_2 [all data]	0.0610
largest difference peak and hole	0.799 and –0.713 e Å ⁻³

^{*a*}Obtained from least-squares refinement of 9848 reflections with $6.90^{\circ} < 2\theta < 147.34^{\circ}$.

(continued)

 Table 1. Crystallographic Experimental Details (continued)

^bPrograms for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.

^cSheldrick, G. M. Acta Crystallogr. 2015, A71, 3-8.

dSheldrick, G. M. Acta Crystallogr. 2015, C71, 3-8.

eThe O1–H1O and O2–H2O distances were constrained to be 0.84(1) Å during refinement.

 ${}^{f}S = [\Sigma w(F_{o}{}^{2} - F_{c}{}^{2})^{2}/(n - p)]^{1/2} (n = \text{number of data; } p = \text{number of parameters varied; } w = [\sigma^{2}(F_{o}{}^{2}) + (0.0309P)^{2}]^{-1} \text{ where } P = [\text{Max}(F_{o}{}^{2}, 0) + 2F_{c}{}^{2}]/3).$

 $gR_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; \ wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^4)]^{1/2}.$

Atom	x	у	z	$U_{ m eq},{ m \AA}^2$
Ι	0.09245(3)	0.63235(2)	0.45180(2)	0.02620(7)*
01	0.2300(4)	0.87928(15)	0.42428(18)	0.0298(4)*
O2	0.6861(4)	0.89361(16)	0.45499(18)	0.0314(4)*
O3	0.7652(4)	0.55925(17)	0.08337(17)	0.0317(4)*
O4	-0.0433(5)	0.11239(19)	0.28855(18)	0.0393(5)*
C1	0.3394(5)	0.5041(2)	0.2529(2)	0.0206(5)*
C2	0.3217(5)	0.6120(2)	0.32880(19)	0.0192(4)*
C3	0.4588(5)	0.7050(2)	0.3255(2)	0.0206(5)*
C4	0.6144(5)	0.6887(2)	0.2445(2)	0.0225(5)*
C5	0.6226(5)	0.5830(2)	0.1660(2)	0.0235(5)*
C6	0.4822(5)	0.4919(2)	0.1702(2)	0.0233(5)*
C7	0.2276(5)	0.4013(2)	0.2606(2)	0.0224(5)*
C8	0.0030(6)	0.3386(2)	0.1989(2)	0.0295(6)*
C9	-0.0935(6)	0.2411(2)	0.2055(3)	0.0337(7)*
C10	0.0414(6)	0.2051(2)	0.2727(2)	0.0268(5)*
C11	0.2685(6)	0.2656(2)	0.3341(2)	0.0295(6)*
C12	0.3594(6)	0.3639(2)	0.3287(2)	0.0284(6)*
C13	0.9483(6)	0.6463(2)	0.0858(2)	0.0314(6)*
C14	-0.2206(6)	0.0305(2)	0.2142(2)	0.0302(6)*
C15	-0.4343(6)	-0.0062(3)	0.2498(3)	0.0338(6)*
C16	-0.6078(7)	-0.0940(3)	0.1794(3)	0.0402(8)*
C17	-0.5682(7)	-0.1433(3)	0.0750(3)	0.0426(8)*
C18	-0.3535(7)	-0.1063(3)	0.0406(3)	0.0385(7)*
C19	-0.1773(6)	-0.0191(3)	0.1102(3)	0.0344(6)*
В	0.4553(6)	0.8303(2)	0.4069(2)	0.0213(5)*
H1O	0.263(8)	0.9469(12)	0.464(3)	0.046(12)
H2O	0.826(4)	0.864(3)	0.453(3)	0.039(10)

Table 2. Atomic Coordinates and Equivalent Isotropic Displacement Parameters

Anisotropically-refined atoms are marked with an asterisk (*). The form of the anisotropic displacement parameter is: $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})].$

Atom1	Atom2	Distance	Atom1	Atom2	Distance
Ι	C2	2.109(3)	C5	C6	1.393(4)
01	В	1.350(4)	C7	C8	1.386(3)
O2	В	1.365(3)	C7	C12	1.397(4)
03	C5	1.362(3)	C8	C9	1.395(4)
03	C13	1.432(3)	C9	C10	1.384(4)
O4	C10	1.384(3)	C10	C11	1.387(4)
O4	C14	1.382(3)	C11	C12	1.389(4)
C1	C2	1.404(3)	C14	C15	1.385(4)
C1	C6	1.386(4)	C14	C19	1.383(5)
C1	C7	1.492(3)	C15	C16	1.389(4)
C2	C3	1.401(3)	C16	C17	1.382(6)
C3	C4	1.398(4)	C17	C18	1.382(5)
C3	В	1.585(4)	C18	C19	1.389(4)
C4	C5	1.388(4)			

Table 3.	Selected	Interatomic	Distances	(Å))
----------	----------	-------------	-----------	-----	---

 Table 4.
 Selected Interatomic Angles (deg)

Atom1	Atom2	Atom3	Angle	Atom1	Atom2	Atom3	Angle
C5	03	C13	117.3(2)	C7	C8	C9	121.1(3)
C10	O4	C14	119.8(2)	C8	C9	C10	119.3(3)
C2	C1	C6	118.4(2)	O4	C10	C9	123.9(3)
C2	C1	C7	123.3(2)	O4	C10	C11	115.4(2)
C6	C1	C7	118.2(2)	C9	C10	C11	120.6(2)
Ι	C2	C1	118.83(18)	C10	C11	C12	119.6(2)
Ι	C2	C3	119.96(19)	C7	C12	C11	120.8(2)
C1	C2	C3	121.2(2)	O4	C14	C15	116.9(3)
C2	C3	C4	118.7(2)	O4	C14	C19	121.8(3)
C2	C3	В	125.7(2)	C15	C14	C19	121.1(3)
C4	C3	В	115.7(2)	C14	C15	C16	119.1(3)
C3	C4	C5	120.7(2)	C15	C16	C17	120.3(3)
03	C5	C4	124.8(2)	C16	C17	C18	120.0(3)
03	C5	C6	115.5(2)	C17	C18	C19	120.4(3)
C4	C5	C6	119.6(3)	C14	C19	C18	119.1(3)
C1	C6	C5	121.2(2)	O1	В	O2	118.5(2)
C1	C7	C8	122.1(2)	O1	В	C3	121.6(2)
C1	C7	C12	119.1(2)	O2	В	C3	119.7(2)
C8	C7	C12	118.7(2)				

D–H···A	D–H (Å)	H…A (Å)	D…A (Å)	∠D–H…A (deg)
01–H1O····O2 <i>a</i>	0.835(10) ^c	1.934(11)	2.766(3)	174(4)
O2−H2O…O1 ^b	0.836(10) ^c	2.16(3)	2.869(3)	143(4)

Table 5. Hydrogen-Bonded Interactions

^{*a*}At 1–*x*, 2–*y*, 1–*z*. ^{*b*}At 1+*x*, *y*, *z*. ^{*c*}Distance constrained during refinement.

 Table 6.
 Torsional Angles (deg)

Atom1	Atom2	Atom3	Atom4	Angle	Atom1	Atom2	Atom3	Atom4	Angle
C13	O3	C5	C4	9.5(4)	C4	C3	В	01	121.5(3)
C13	O3	C5	C6	-169.0(2)	C4	C3	В	O2	-53.3(3)
C14	O4	C10	C9	21.2(5)	C3	C4	C5	O3	179.1(2)
C14	O4	C10	C11	-162.4(3)	C3	C4	C5	C6	-2.5(4)
C10	O4	C14	C15	-132.1(3)	03	C5	C6	C1	176.8(2)
C10	O4	C14	C19	52.8(4)	C4	C5	C6	C1	-1.7(4)
C6	C1	C2	Ι	177.53(18)	C1	C7	C8	C9	178.2(3)
C6	C1	C2	C3	-4.3(4)	C12	C7	C8	C9	1.0(5)
C7	C1	C2	Ι	-6.8(3)	C1	C7	C12	C11	-176.8(3)
C7	C1	C2	C3	171.4(2)	C8	C7	C12	C11	0.5(5)
C2	C1	C6	C5	5.0(4)	C7	C8	C9	C10	-1.6(5)
C7	C1	C6	C5	-170.9(2)	C8	C9	C10	O4	177.0(3)
C2	C1	C7	C8	106.3(3)	C8	C9	C10	C11	0.8(5)
C2	C1	C7	C12	-76.5(4)	O4	C10	C11	C12	-175.9(3)
C6	C1	C7	C8	-78.0(4)	C9	C10	C11	C12	0.7(5)
C6	C1	C7	C12	99.2(3)	C10	C11	C12	C7	-1.3(5)
Ι	C2	C3	C4	178.40(18)	O4	C14	C15	C16	-175.3(3)
Ι	C2	C3	В	-1.4(3)	C19	C14	C15	C16	-0.2(5)
C1	C2	C3	C4	0.2(4)	O4	C14	C19	C18	175.5(3)
C1	C2	C3	В	-179.6(2)	C15	C14	C19	C18	0.6(5)
C2	C3	C4	C5	3.2(4)	C14	C15	C16	C17	-0.5(5)
В	C3	C4	C5	-176.9(2)	C15	C16	C17	C18	0.8(5)
C2	C3	В	01	-58.6(4)	C16	C17	C18	C19	-0.4(5)
C2	C3	В	O2	126.6(3)	C17	C18	C19	C14	-0.3(5)

Atom	U_{11}	U_{22}	U ₃₃	U_{23}	U_{13}	U_{12}
Ι	0.02873(10)	0.02727(9)	0.02379(10)	0.01104(7)	0.00630(6)	0.00406(6)
01	0.0205(9)	0.0187(8)	0.0414(12)	0.0031(8)	0.0054(8)	0.0034(7)
O2	0.0203(9)	0.0207(8)	0.0409(12)	0.0008(8)	0.0006(8)	0.0029(7)
O3	0.0347(11)	0.0262(9)	0.0286(11)	0.0045(8)	0.0139(8)	-0.0014(8)
O4	0.0560(14)	0.0312(10)	0.0311(12)	0.0174(10)	-0.0051(10)	-0.0152(10)
C1	0.0205(11)	0.0177(11)	0.0212(13)	0.0061(10)	-0.0002(9)	0.0014(9)
C2	0.0195(11)	0.0205(11)	0.0171(12)	0.0070(9)	0.0023(8)	0.0033(9)
C3	0.0220(12)	0.0162(10)	0.0199(12)	0.0041(9)	0.0005(9)	0.0025(9)
C4	0.0205(11)	0.0192(11)	0.0277(14)	0.0099(10)	0.0023(10)	0.0012(9)
C5	0.0220(12)	0.0239(12)	0.0236(13)	0.0081(10)	0.0052(10)	0.0037(9)
C6	0.0260(13)	0.0178(10)	0.0212(13)	0.0032(10)	0.0019(9)	0.0024(9)
C7	0.0244(12)	0.0182(11)	0.0238(13)	0.0078(10)	0.0031(10)	0.0013(9)
C8	0.0271(13)	0.0258(12)	0.0363(16)	0.0155(12)	-0.0047(11)	-0.0005(10)
C9	0.0299(14)	0.0283(13)	0.0408(18)	0.0153(13)	-0.0067(12)	-0.0068(11)
C10	0.0332(14)	0.0215(11)	0.0251(14)	0.0097(11)	0.0041(11)	-0.0027(10)
C11	0.0360(15)	0.0250(12)	0.0274(15)	0.0122(11)	-0.0023(11)	-0.0002(11)
C12	0.0307(14)	0.0243(12)	0.0284(15)	0.0111(11)	-0.0033(11)	-0.0035(10)
C13	0.0311(14)	0.0284(13)	0.0353(16)	0.0125(12)	0.0128(12)	0.0013(11)
C14	0.0353(15)	0.0228(12)	0.0341(16)	0.0148(12)	0.0002(12)	-0.0020(11)
C15	0.0378(16)	0.0305(14)	0.0395(17)	0.0207(13)	0.0059(13)	0.0036(12)
C16	0.0316(15)	0.0409(16)	0.057(2)	0.0309(17)	0.0001(14)	-0.0027(13)
C17	0.0430(18)	0.0320(15)	0.051(2)	0.0206(15)	-0.0129(15)	-0.0090(13)
C18	0.0454(18)	0.0308(14)	0.0348(17)	0.0107(13)	-0.0043(13)	0.0025(13)
C19	0.0341(15)	0.0337(14)	0.0372(17)	0.0176(13)	0.0026(12)	-0.0018(12)
В	0.0209(13)	0.0161(12)	0.0241(15)	0.0054(11)	0.0017(10)	0.0031(10)

Table 7.	Anisotropic Displacement Parameters	$(U_{ij}, Å^2)$
----------	-------------------------------------	-----------------

The form of the anisotropic displacement parameter is: $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})]$

Atom	x	У	Z.	$U_{\rm eq},{\rm \AA}^2$
H4	0.7156	0.7504	0.2431	0.027
H6	0.4844	0.4201	0.1153	0.028
H8	-0.0868	0.3625	0.1515	0.035
H9	-0.2502	0.1999	0.1641	0.040
H11	0.3613	0.2401	0.3796	0.035
H12	0.5130	0.4063	0.3718	0.034
H13A	0.8529	0.7056	0.0792	0.038
H13B	1.0551	0.6163	0.0276	0.038
H13C	1.0622	0.6767	0.1521	0.038
H15	-0.4619	0.0283	0.3215	0.041
H16	-0.7542	-0.1202	0.2030	0.048
H17	-0.6887	-0.2027	0.0269	0.051
H18	-0.3263	-0.1407	-0.0311	0.046
H19	-0.0291	0.0062	0.0867	0.041

Table 8. Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

Methods:

Antimicrobial activity assay

Inhibition zone determination

The antimicrobial activity of the 5_A , 6_A , 9_A , 14_A , 15_A , $17_A - 22_A$ compounds was tested for antimicrobial activity against the Gram-negative bacterial strains *Escherichia coli* (*ATCC 25922*) and Gram-positive bacterial strains *Staphylococcus aureus* (*ATCC 29213*), *Micrococcus luteus* (*ATCC 9341*) and *Bacillus cereus* (*ATCC 11778*). Moreover, the antifungal activity was performed against *Candida albicans* (*clinical sample supplied by King Abdullah University Hospital-KAUH*).

The different bacterial strains were inoculated into the nutrient broth, and on nutrient agar media, the resulting pure colonies were used to prepare bacterial suspensions. A loop full of the tested bacteria was used to inoculate nutrient broth and was incubated for 24 hrs at 30 °C. The bacterial suspension turbidity was adjusted to 0.5 McFarland standards. One hundred microliters of each test organism was inoculated into solidified agar plates.

Well-diffusion method was performed for the assessment of the antimicrobial activity according to the recommendations of the National Committee for Clinical Laboratory Standards (NCCLS) [1, 2]. Briefly, 8 mm wells were generated after inoculation of the nutrient agar plate with the appropriate bacterial strain. Fifty microliters of each DMSO-dissolved compound were added to each well followed by overnight incubation at 30 $^{\circ}$ C. The inhibition zones were recorded (Table 1) and the antimicrobial activities of the tested compounds against the tested microorganisms were analyzed.

Minimum inhibitory concentration

 $_{\rm Page} 159$

The minimum inhibitory concentration of 5_A , 6_A , 9_A , 14_A , 15_A , $17_A - 22_A$ compounds was assessed with modified techniques by Satyajit D. Sarker *et al* [3]. The tested bacterial strains were cultured in 10 ml of nutrient broth tube and incubated for 24 hrs at 30°C. The different volume of the tested compounds was added into a separate well of sterile 96 well microplate. Ten μ l of prepared nutrient broth cultures in a concentration of 5×105 CFU/mL of *Escherichia coli* (ATCC 25922), *Staphylococcus aureus* (ATCC 29213), *Micrococcus luteus* (ATCC 9341) and *Bacillus cereus* (ATCC 11778). microorganisms, and 10 µl of resazurin were added different wells. The nutrient broth was added into well up to 120 µl final volume. 96 well microplate was incubated for 24h at 30°C, and then the color change was assessed visually. Any color changes from purple to pink or colorless were recorded as positive growth (Table 2). All experiments were performed in triplicates.

Results:

Antimicrobial activity assay:

Inhibition zone determination

The zone of inhibition diameter for the tested compounds against the growth of the selected microorganisms is presented below. Control experiment results showed that the tested microorganisms were able to grow in the presence of DMSO alone.

The inhibition zone exhibited by synthetic iodinated biphenylboronic acids $5_A - 6_A$, 9_A , $14_A - 15_A$ and $17_A - 22_A$ against two gram-positive and two gram-negative bacteria strains as well as one fungus strain using well-diffusion method

	Synthetic Iodinated biphenylboronic acid compounds										
Microbiological Species	5 _A	6 _A	9 _A	14 _A	15 _A	17 _A	18 _A	19 _A	20 _A	21 _A	22 _A
mg/mL	3	1	1	12	7	6	5	5	6	3	5
Micrococcus Luteus	20 (±4.2)	20 (±2.1)	12 (±4.9)	15 (±3.5)	10 (±6.3)	NI	NI	13 (±4.9)	13 (±4.9)	18 (<u>+</u> 4.9)	20 (±4.9)
Bacillus Cereus	20 (±3.5)	25 (±4.2)	19 (±4.8)	20 (±7.7)	13 (± 5.0)	21 (±4.2)	15 (±4.2)	23 (±4.2)	17 (±4.2)	20 (±4.2)	22 (±4.2)
Escherichia Coli	20 (±3.5)	NI	NI	NI	NI	NI	NI	NI	NI	NI	10 (±4.2)
Staphylococcus aureus	22 (±3.5)	20 (±1.5)	11 (<u>+</u> 3.5)	20 (±4.2)	NI	15 (±1.5)	10 (±1.5)	18 (±1.5)	15 (±1.5)	18 (±1.5)	22 (+1.5)
Candida albicans	20 (±2.5)	12 (±2.8)	NI	17 (<u>+</u> 3.5)	NI	NI	NI	NI	NI	NI	15 (<u>+</u> 4.4)

Zone of inhibition in mm

NI: No Inhibition

Figure 2. Anti *Micrococcus luteus* activity for iodinated biphenylboronic acids. No inhibition for the negative control (DMSO).

Figure 3. Anti *Staphylococcus aureus* activity for iodinated biphenylboronic acids. No inhibition for the negative control (DMSO).

Figure 4. Anti *Escherichia coli* activity for iodinated biphenylboronic acids. No inhibition for the negative control (DMSO).

Figure 5. Anti *Candida albicans* activity for iodinated biphenylboronic acids. No inhibition for the negative control (DMSO).

Minimum inhibitory concentration (MIC)

OMe

OMe

The MIC value is the minimum concentration of the 5_A , 6_A , 9_A , 14_A , 15_A , 17_A - 22_A compounds at which no microbial growth is recognized. The MIC of tested 11-compounds against the selected microorganisms is shown in next Table. In the current study, only 4 compounds exhibited antifungal activity, moreover, all of the tested compounds showed anti-microbial activity against gram positive bacteria. Compounds 6_A and 22_A exhibited a highly potent antimicrobial and <u>anti-fungal</u> activity by inhibition all tested microorganisms.

Microbial Species Iodobiphenyl **R₁ Group** boronic acid M. luteus B. cereus S. aureus C. albicans Compounds $\mathbf{5}_{\mathbf{A}}$ 0.45 0.9 0.48 0.37 Η 6_A 0.15 0.10 0.48 0.16 Η 9_A 0.80 0.16 0.26 NT Me 14_A 3.2 1.6 1.4 3.0 OMe 15_A 3.0 1.4 NT NT OMe 17_A NT 0.75 0.8 NT Me 18_A NT 0.62 0.7 NT OMe 19_A OMe 1.5 0.96 0.78 NT 20_A 0.8 0.49 0.75 NT OMe 0.6 0.48 NT $\mathbf{21}_{A}$ 0.4

0.2

Minimum inhibitory concentration (MIC, mg/mL) for synthesized iodobiphenyl boronic acid derivatives against Micrococcus Luteus, Bacillus cereus, Staphylococcus aureus and Candida albicans

References:

22_A

1. Allen, K.L., P.C. Molan, and G.M. Reid, A survey of the antibacterial activity of some New Zealand honeys. J Pharm Pharmacol, 1991. 43(12): p. 817-22.

0.15

0.15

0.3

- 2. Holder, I.A. and S.T. Boyce, Agar well diffusion assay testing of bacterial susceptibility to various antimicrobials in concentrations non-toxic for human cells in culture. Burns, 1994. 20(5): p. 426-9.
- 3. Sarker, S.D., L. Nahar, and Y. Kumarasamy, Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods, 2007. 42(4): p. 321-4.