Supporting information

A fluorescence probe based on 6-phenylimidazo[2,1-b]thiazole and salicylaldehyde for relay discerning of In³⁺ and Cr³⁺

Bing Li,^a Xiaodong Shang^{b,*}, Linlin Li,^a Yuankang Xu,^a Hanyu Wang,^a Xiaofeng Yang,^a Meishan Pei, ^aRuiqing Zhang,^a Guangyou Zhang^{a,*}

^aSchool of Chemistry and Chemical Engineering, University of Jinan,

Jinan 250022, China. Email address: chm_zhanggy@ujn.edu.cn

^bHenan Sanmenxia Aoke Chemical Industry Co. Ltd., Sanmenxia

472000, China. E-mail address: dong19840814.love@163.com

*Corresponding author: Guangyou Zhang, E-mail address:

chm_zhanggy@ujn.edu.cn. Xiaodong Shang, E-mail address:

dong19840814.love@163.com

Fig.S2. ¹³C NMR spectrum of compound **3**.

Fig.S3.ESI mass spectrum of compound 3

Fig.S4.The FTIR spectra of compound 3

Fig.S6. ¹³C NMR spectrum of LB1

Fig.S8.The FTIR spectra of LB1

Fig.S9. Linear response of the emission intensity changes of **LB1** with the concentration of In^{3+} . Excitation is at 365 nm.

Fig.S10. Absorption spectra of LB1 (1×10^{-5} M) in DMF/H₂O (9:1,v/v) containing Tris (0.01 M, pH=7.4) buffer solution in the presence of various metal ions(Mg²⁺, Cu²⁺, Co²⁺, Al³⁺, Hg²⁺, Ag⁺, Mn²⁺, Ga³⁺, K⁺, Ca²⁺, Ni²⁺, Fe³⁺, Cd²⁺, Cr³⁺ and Zn²⁺)

Fig.S11. Job's plot of the **LB1+In³⁺** complex in DMF/H₂O (9:1, v/v) containing Tris (0.01 M, pH=7.4) at 25 °C. The total concentration of LB1 and In³⁺ was 0.1 mM. Excitation is at 365 nm, and emission was monitored at 468 nm.

Fig.S12. Change ratio of [LB1 + In³⁺] (1 × 10⁻⁵ M) in DMF/H₂O (9 : 1, v/v, Tris 0.01 M, pH= 7.4) upon titration with Cr^{3+} (1 × 10⁻⁶ M).Emission is monitored at 468 nm.

Fig.S13. ESI mass spectrum of complex [LB1+In³⁺].

Fig.S14. XYZ coordination of the optimized structure of LB1 (a) and LB1+In³⁺ (b).

Fig.S15. ESI mass spectrum of complex [LB1+Cr³⁺].

Fig.S16. (a) XYZ coordination of the optimized structure of $LB1+Cr^{3+}$.(b) Energy graphic illustration of HOMO and LUMO orbital $LB1+Cr^{3+}$

sample	In ³⁺ added	In ³⁺ recovered	Recovery	RSD	
	(mol L ⁻¹)	(mol L ⁻¹)	(%)	(%)	

1	2×10^{-5}	2.1 × 10 ⁻⁵	107.4	0.53	
2	3×10^{-5}	3.1×10^{-5}	105.7	0.68	
3	$4 imes 10^{-5}$	$3.9 imes 10^{-5}$	97.5	1.33	

sample	Cr ³⁺ added	Cr ³⁺ recovered	Recovery	RSD	
	(mol L ⁻¹)	(mol L ⁻¹)	(%)	(%)	
1	3×10^{-5}	3×10^{-5}	101.6	0.92	
2	6 × 10 ⁻⁵	6.3×10^{-5}	106.3	1.31	
3	7×10^{-5}	$6.9 imes 10^{-5}$	98.6	1.49	

Table S3 Determination of the In^{3+} concentration in drink water samples

sample	In ³⁺ added	In ³⁺ recovered	Recovery	RSD
	(mol L ⁻¹)	(mol L ⁻¹)	(%)	(%)
1	1×10^{-5}	1.0×10^{-5}	96.3	1.46
2	2×10^{-5}	2.1 × 10 ⁻⁵	106.8	0.35
3	3×10^{-5}	3.2×10^{-5}	107.1	1.78

Table S4 Determination of the $\rm Cr^{3+}$ concentration in drink water samples

sample	Cr ³⁺ added	Cr ³⁺ recovered	Recovery	RSD	
	$(mol L^{-1})$	(mol L ⁻¹)	(%)	(%)	
1	1 × 10 ⁻⁵	1.0×10^{-5}	103.3	0.54	
2	3×10^{-5}	2.9×10^{-5}	98.9	0.11	
3	4 × 10 ⁻⁵	3.7×10^{-5}	91.3	0.76	

Table S5 Comparison of type of indium sensors and their detection limits

Solvent system	Detection limit	Response	Reference
CH ₃ CN	$1.9\times10^{\text{-7}}M$	turn-off	5
CH ₃ CN/H ₂ O(v/v,1:1)	$7 imes 10^{-8} M$	off-on	6
Methanol/H ₂ O(v/v,6:4)	$1.4\times10^{\text{-8}}M$	-	15
Ethanol	$6.1\times10^{7}M$	turn-on	56
DMF/H ₂ O(v/v,9:1)	$2.59\times10^{\text{-9}}\text{M}$	off-on	this work

Table S6 Comparison of type of chromium sensors and their detection limits

Tuble 56 comparison of type of emonitum sensors and then detection mints					
Solvent system	Detection limit	Response	Reference		
DMF	$4.8\times10^{\text{-6}}M$	turn-off	57		
CH ₃ CN/HEPES	$6.09\times 10^{\text{-6}}M$	off-on	58		
CH ₃ CN/HEPES(v/v,4:6)	$1 \times 10^{\text{-6}}M$	turn-on	59		
DMF/Water(v/v,9:1)	$9\times 10^{\text{-6}}M$	turn-off	60		
DMSO/Methanol (v/v,9:1)	$4\times 10^{\text{-4}}M$	turn-on	61		
DMF/H ₂ O(v/v,9:1)	$8.05\times10^{7}M$	on-off	this work		