Supporting information

A fluorescence probe based on 6-phenylimidazo[2,1-b]thiazole and salicylaldehyde for relay discerning of In^{3+} and Cr^{3+} Bing Li, ${ }^{\text {a }}$ Xiaodong Shangb,*, Linlin Li, ${ }^{\text {a }}$ Yuankang $\mathrm{Xu},{ }^{\text {a }}$ Hanyu
 Zhang ${ }^{\text {a,* }}$
${ }^{a}$ School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 ,China. Email address: chm_zhanggy@ujn.edu.cn ${ }^{b}$ Henan Sanmenxia Aoke Chemical Industry Co. Ltd., Sanmenxia 472000, China. E-mail address: dong19840814.love@163.com *Corresponding author: Guangyou Zhang, E-mail address: chm_zhanggy@ujn.edu.cn. Xiaodong Shang, E-mail address: dong19840814.love@163.com

Fig.S1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 3.

Fig.S2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 3 .

Sample Name	190717-L-01	Position	P1-F2	Instrument Name	Instrument 1	User Name	
Inj Vol	-1	InjPosition		SampleType	Sample	IRM Calibration Status	Success
Data Filename	190717-L-01.d	ACQ Method	$0103 . \mathrm{m}$	Comment		Acquired Time	7/17/2019 12:13:23 AM

Fig.S3.ESI mass spectrum of compound 3

Fig.S4.The FTIR spectra of compound $\mathbf{3}$

Fig.S5. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L B} 1$.

Fig.S6. ${ }^{13} \mathrm{C}$ NMR spectrum of LB1

Sample Name	190717-L-02	Position	P1-E2	Instrument Name	Instrument 1	User Name	
Inj Vol	-1	InjPosition		SampleType	Sample	IRM Calibration Status	Success
Data Filename	190717-L-02.d	ACQ Method	$0103 . \mathrm{m}$	Comment		Acquired Time	7/17/2019 12:46:35 AM

Fig.S7.ESI mass spectrum of LB1

Fig.S8.The FTIR spectra of LB1

Fig.S9. Linear response of the emission intensity changes of LB1 with the concentration of In^{3+}. Excitation is at 365 nm .

Fig.S10. Absorption spectra of $\mathbf{L B 1}\left(1 \times 10^{-5} \mathrm{M}\right)$ in $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}(9: 1, \mathrm{v} / \mathrm{v})$ containing Tris (0.01 M , $\mathrm{pH}=7.4)$ buffer solution in the presence of various metal ions $\left(\mathrm{Mg}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Co}^{2+}, \mathrm{Al}^{3+}, \mathrm{Hg}^{2+}, \mathrm{Ag}^{+}\right.$, $\mathrm{Mn}^{2+}, \mathrm{Ga}^{3+}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Cd}^{2+}, \mathrm{Cr}^{3+}$ and Zn^{2+})

Fig.S11. Job's plot of the LB1+In ${ }^{3+}$ complex in DMF/ $\mathrm{H}_{2} \mathrm{O}(9: 1, \mathrm{v} / \mathrm{v})$ containing Tris (0.01 M , $\mathrm{pH}=7.4$) at $25^{\circ} \mathrm{C}$. The total concentration of LB 1 and In^{3+} was 0.1 mM . Excitation is at 365 nm , and emission was monitored at 468 nm .

Fig.S12. Change ratio of $\left[\mathrm{LB} 1+\mathrm{In}^{3+}\right]\left(1 \times 10^{-5} \mathrm{M}\right)$ in DMF/ $\mathrm{H}_{2} \mathrm{O}(9: 1$, v / v, Tris $0.01 \mathrm{M}, \mathrm{pH}=7.4)$ upon titration with $\mathrm{Cr}^{3+}\left(1 \times 10^{-6} \mathrm{M}\right)$. Emission is monitored at 468 nm .

Sample Name	190720-LB-03	Position	P1-E2	Instrument Name	Instrument 1	User Name	
Inj Vol	-1	InjPosition		SampleType	Sample	IRM Calibration Status	Success
Data Filename	$190720-$ LB-03.d	ACQ Method	$0103 . \mathrm{m}$	Comment		Acquired Time	7/20/2019 10:02:23 PM

Fig.S13. ESI mass spectrum of complex $\left[\mathbf{L B} 1+\mathbf{I n}^{\mathbf{3 +}}\right]$.

(b)

Fig.S14. XYZ coordination of the optimized structure of $\mathbf{L B 1}$ (a) and $\mathbf{L B} 1+\mathbf{I n}^{\mathbf{3 +}}$ (b).

Sample Name	190720-L8-04	Position	P1-D2	Instrument Name	Instrument 1	User Name	
Inj Vol	-1	InjPosition		SampleType	Sample	IRM Calibration Status	Success
Data Filename	$190720-$ L8-04.d	ACQ Method	$0103 . \mathrm{m}$	Comment		Acquired Time	7/20/2019 10:04:38 PM

Fig.S15. ESI mass spectrum of complex $\left[\mathbf{L B} 1+\mathbf{C r}^{\mathbf{3 +}}\right]$.

Fig.S16. (a) XYZ coordination of the optimized structure of $\mathbf{L B} 1+\mathbf{C r}^{3+}$.(b) Energy graphic illustration of HOMO and LUMO orbital LB1+Cr ${ }^{3+}$

Table S1 Determination of the In^{3+} concentration in tap water samples

sample	In^{3+} added	In^{3+} recovered	Recovery	RSD
	$\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$(\%)$	$(\%)$

1	2×10^{-5}	2.1×10^{-5}	107.4	0.53
2	3×10^{-5}	3.1×10^{-5}	105.7	0.68
3	4×10^{-5}	3.9×10^{-5}	97.5	1.33

Table S2 Determination of the Cr^{3+} concentration in tap water samples

sample	Cr^{3+} added $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	Cr^{3+} recovered $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	Recovery $(\%)$	RSD $(\%)$
1	3×10^{-5}	3×10^{-5}	101.6	0.92
2	6×10^{-5}	6.3×10^{-5}	106.3	1.31
3	7×10^{-5}	6.9×10^{-5}	98.6	1.49

Table S3 Determination of the In^{3+} concentration in drink water samples

sample	In^{3+} added $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	In^{3+} recovered $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	Recovery $(\%)$	RSD $(\%)$
1	1×10^{-5}	1.0×10^{-5}	96.3	1.46
2	2×10^{-5}	2.1×10^{-5}	106.8	0.35
3	3×10^{-5}	3.2×10^{-5}	107.1	1.78

Table S4 Determination of the Cr^{3+} concentration in drink water samples

sample	Cr^{3+} added $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	Cr^{3+} recovered $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	Recovery $(\%)$	RSD $(\%)$
1	1×10^{-5}	1.0×10^{-5}	103.3	0.54
2	3×10^{-5}	2.9×10^{-5}	98.9	0.11
3	4×10^{-5}	3.7×10^{-5}	91.3	0.76

Table S5 Comparison of type of indium sensors and their detection limits

Solvent system	Detection limit	Response	Reference
$\mathrm{CH}_{3} \mathrm{CN}$	$1.9 \times 10^{-7} \mathrm{M}$	turn-off	5
$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}, 1: 1)$	$7 \times 10^{-8} \mathrm{M}$	off-on	6
Methanol $/ \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}, 6: 4)$	$1.4 \times 10^{-8} \mathrm{M}$	-	15
Ethanol	$6.1 \times 10^{-7} \mathrm{M}$	turn-on	56
DMF/ $\mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}, 9: 1)$	$2.59 \times 10^{-9} \mathrm{M}$	off-on	this work

Table S6 Comparison of type of chromium sensors and their detection limits

Solvent system	Detection limit	Response	Reference
DMF	$4.8 \times 10^{-6} \mathrm{M}$	turn-off	57
$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{HEPES}$	$6.09 \times 10^{-6} \mathrm{M}$	off-on	58
$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{HEPES}(\mathrm{v} / \mathrm{v}, 4: 6)$	$1 \times 10^{-6} \mathrm{M}$	turn-on	59
DMF/Water(v/v,9:1)	$9 \times 10^{-6} \mathrm{M}$	turn-off	60
DMSO/Methanol $(\mathrm{v} / \mathrm{v}, 9: 1)$	$4 \times 10^{-4} \mathrm{M}$	turn-on	61
$\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}, 9: 1)$	$8.05 \times 10^{-7} \mathrm{M}$	on-off	this work

