Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information

3.2. IR spectra

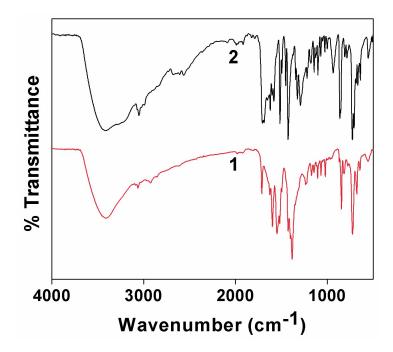
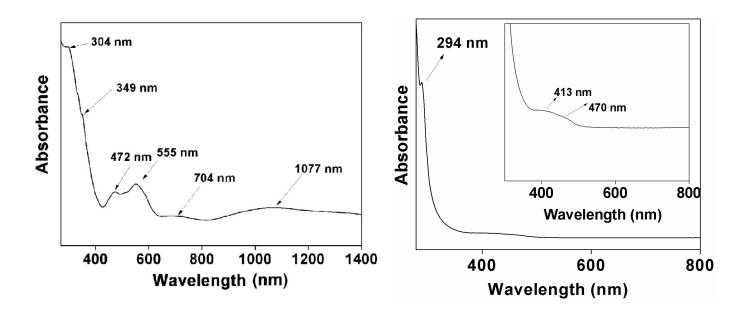



Fig. S1 FT-IR spectra of compounds 1 and 2

FT-IR spectra of the synthesized compounds have been recorded in the region 4000–500 cm⁻¹ [Fig. S1]. The coordination of *phen* to the Co(II) and Zn(II) metal centers in complexes **1** and **2** are indicated by the shifting of IR frequencies for δ (C–H) vibrations of *phen*.⁴¹ The bands in the range 3421-3370 cm⁻¹ for both the complexes could be assigned to the stretching vibration of the water involving hydrogen bonding.⁴² The IR spectral bands within 1300-1650 cm⁻¹ region are difficult to assign due to the appearance of several absorption bands both for the *phen* and bz ligands of the complexes.⁴³ A strong absorption band at 1539 cm⁻¹ indicates the presence of aromatic bzH in the lattice of compound **2**.⁴⁴ The difference between the asymmetric stretching, v_{as}(COO⁻) and symmetric stretching vibration bands, v_s(COO⁻) for compound **1** is observed below 200 cm⁻¹ which indicates monodentate binding of bz at Co(II) metal centre.⁴⁵

3.3 Electronic spectra

(a) (b) Fig. S2 (a) Solid state UV-vis-NIR spectrum of 1 (b) UV-vis spectrum of 1 in water (10⁻³M)

Solid state UV-Vis-NIR spectrum of complex 1 exhibit bands at 304 nm and 349 nm assigned to $\pi \rightarrow \pi^*$ and $n \rightarrow \pi^*$ transitions of the aromatic ligand [Fig. S2(a)]. Three ligand field bands viz. ${}^{4}T_{1g}(F) \rightarrow {}^{4}T_{2g}(F)$ (v₁), ${}^{4}T_{1g}(F) \rightarrow {}^{4}A_{2g}(F)$ (v₂) and ${}^{4}T_{1g}(F) \rightarrow {}^{4}T_{1g}(P)$ (v₃) for high-spin octahedral Co(II) complex for 1 is observed in solid state spectrum.⁴⁶ The first band occurs at 1077 nm, the third band is seen at 472 nm, and the v₂ band due to ${}^{4}T_{1g}(F) \rightarrow {}^{4}A_{2g}(F)$ appears at 555 nm. The extra band at 704 nm appeared for v₂ can be attributed either to spin orbit coupling or to transition to doublet state.⁴⁶ However, the spectrum in water [Fig. S2(b)] shows weak absorption bands at 413 nm and 470 nm assigned to ${}^{4}T_{1g}(F) \rightarrow {}^{4}T_{1g}(P)$ (v₃) and ${}^{4}T_{1g}(F) \rightarrow {}^{4}A_{2g}(F)$ (v₂) transitions. The NIR band is not seen in the solution spectrum because of the limit in wavelength window of the spectrophotometer used.⁴⁷

The electronic spectra of compound **2** are shown in Fig. S3. Compound **2** shows no spectral band in the visible region in both aqueous and solid phases, which can be attributed to the d^{10} configuration of the Zn(II) centre that does not allow any electronic transition to the higher excited electronic states.⁴⁸ Characteristic absorptions in the solid and aqueous phase in the wavelength

range 227–275 nm for compound **2** is observed due to π – π * and n– π * transitions of the aromatic ring of *phen* and bz moiety. In the wavelength range 297-349 nm, the absorption bands are observed due to ligand to metal charge transfer transitions.⁴⁹⁻⁵⁰

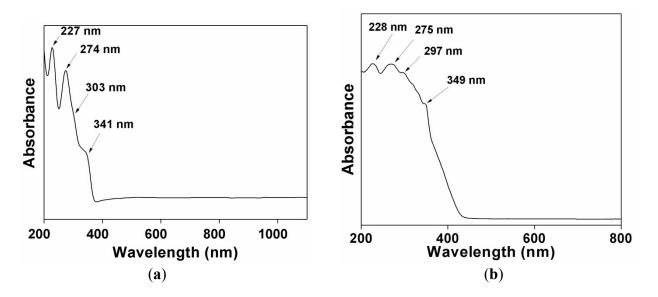


Fig. S3 (a) Solid state UV-vis-NIR spectrum of 2 (b) UV-vis spectrum of 2 in water (10⁻³M)