Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic supplementary information for New Journal of Chemistry

A semi-rigid tricarboxylate ligand based Co(II) coordination polymer: construction and applications in multiple sensing

Bai-Ling Li^a, Jun-Ku Wang^a, Jin-Sheng Gao^{ab}, Ying-Hui Yu^a and Dong-Sheng Ma^{*a}

^aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China ^bAgricultural College, Heilongjiang University, Harbin 150080, PR China

Corresponding E-mail: madongsheng@hlju.edu.cn

Tel: +86-451-86609001; Fax: +86-451-86609151.

CP 1						
Co(1)–O(2)	2.079(2)	Co(1)–O(9)#2	2.110(2)			
Co(1)–O(3)#3	2.123(2)	Co(1)–O(6)#4	2.156(2)			
Co(1)–O(8)	2.150(2)	Co(1)–O(9)	2.077(2)			
Co(2)–O(4)#5	2.014(2)	Co(2)–O(9)	2.031(2)			
Co(2)–O(6)#1	2.081(2)	Co(2)–O(10)	2.088(3)			
Co(2)–O(5)#1	2.411(3)	Co(2)–O(1)	1.994(2)			
O(9)–Co(1)–O(2)	103.17(8)	O(9)–Co(1)–O(9)#2	81.01(8)			
O(2)–Co(1)–O(9)#2	100.37(9)	O(9)–Co(1)–O(3)#3	176.16(8)			
O(2)–Co(1)–O(3)#3	80.37(9)	O(9)#2–Co(1)–O(3)#3	96.97(8)			
O(9)–Co(1)–O(6)#4	89.75(8)	O(2)–Co(1)–O(6)#4	166.52(9)			
O(9)#2–Co(1)–O(6)#4	77.59(8)	O(3)#3–Co(1)–O(6)#4	86.62(8)			
O(9)–Co(1)–O(8)	90.32(9)	O(2)–Co(1)–O(8)	92.15(9)			
O(9)#2–Co(1)–O(8)	166.10(8)	O(3)#3–Co(1)–O(8)	91.05(9)			
O(6)#4-Co(1)-O(8)	91.61(9)	O(1)–Co(2)–O(4)#5	160.82(10)			
O(1)–Co(2)–O(9)	100.38(9)	O(4)#5–Co(2)–O(9)	97.42(9)			
O(1)-Co(2)-O(6)#1	97.28(9)	O(4)#5–Co(2)–O(6)#1	92.46(9)			
O(9)–Co(2)–O(6)#1	81.07(8)	O(1)-Co(2)-O(10)	86.28(10)			
O(4)#5-Co(2)-O(10)	84.28(10)	O(9)–Co(2)–O(10)	97.84(11)			
O(6)#1–Co(2)–O(10)	176.41(9)	O(1)–Co(2)–O(5)#1	83.46(12)			
O(4)#5–Co(2)–O(5)#1	84.50(12)	O(9)–Co(2)–O(5)#1	151.40(9)			
O(6)#1-Co(2)-O(5)#1	70.25(9)	O(10)–Co(2)–O(5)#1	110.60(12)			
Symmetry Code: $\#1 - x + 1, -y + 1, -z + 1$ $\#2 - x, -y + 2, -z$ $\#3 - x, -y + 1, -z$						
#4 x-1, y+1, z-1 #5 x, y+1, z						

Table S1 Selected bond distances (Å) and angles (°) for CP 1.

Fig. S1 ¹H NMR Spectrum of (R)-H₃cbda.

Fig. S2 ¹³C NMR Spectrum of (R)-H₃cbda.

Fig. S3 The IR spectrum of (R)-H₃cbda.

Table S2 Hydrogen	bonds (Å	, °) in CP 1 .
-------------------	----------	-----------------------

<i>D</i> –H···A	<i>D</i> –Н	H····A	$D \cdots A$	∠D–H…A
O8–H8A…O11	0.742	2.324	3.051	166.68
O8−H8B…O7 ⁱ	0.693	2.234	2.893	159.50
09–H9…010 ⁱⁱ	0.933	2.329	3.238	164.86
O10–H10A…O11	0.854	1.890	2.700	158.01
O10–H10B…O7 ⁱⁱⁱ	0.851	1.969	2.778	158.22
O11-H11A…O12	1.021	1.671	2.691	177.50
O11–H11B…O2 ^{iv}	1.025	2.028	3.005	158.47
O11–H11B…O3 ^v	1.025	2.482	3.208	127.29
012–H12A…O3 ^{iv}	1.031	1.853	2.874	169.87
O12–H12B…O8 ^v	1.064	2.339	2.993	118.17

Symmetry codes: (i) x-1, y+1, z-1; (ii) -x+1, -y+2, -z; (iii) -x+2, -y+1, -z+1; (iv)

x+1, y, z; (v) -x+1, -y+1, -z.

Fig. S4 (a) PXRD pattern of CP **1** before treated with Fe^{3+} ion; (b) PXRD patterns of CP **1** after treated with Fe^{3+} ion.

Fig. S5. TGA curve of CP 1.

Fig. S6 Luminescence spectra of CP 1 when introducing disparate metal ions.

Fig. S7 CP 1 TGA curves after treatment with Fe³⁺

Fig. S8 (a) The IR spectrum of CP **1** before treated with Fe^{3+} ions; (b) The IR spectrum of CP **1** after treated with Fe^{3+} ions.

Fig. S9. Absorption spectra of aqueous solution containing $Fe(NO_3)_3$ and other metal Ions (10⁻³ mol/L); red line represents the absorption spectra of CP **1**.

Fig. S10 The absorption spectrum of $Fe(NO_3)_3$ (black) and excitation spectrum (red) spectra of CP 1 suspended stock solution.

Fig. S11 The absorption spectrum (black) and excitation spectrum (red) of CP **1** suspended stock solution.

Fig. S12 (a) PXRD pattern of CP **1** before treating with NB; (b) PXRD patterns of CP **1** after treating with NB.

Fig. S13 (a) The IR spectrum of CP **1** before treating with NB; (b) The IR spectrum of CP **1** after treating with NB.

Detection of antibiotics

LEX

Ξ NH₂

2,4-dichlorophenol

HC OH 0~ он ^н) O Glyphosate

Fig. S14 (a), (c), (e) Luminescence spectra of CP **1** when different concentrations of nitrofuran antibiotics were applied; (b), (d), (f) the relation curve between relative luminescence intensity and nitrofuran antibiotics concentration. Inset: Linear relationship of I_0/I to concentration of nitrofuran antibiotics.

Fig. S15. (a), (c)Luminescence spectra of CP 1 when different concentrations of sulfa antibiotics were applied; (b), (d)The relation curve between relative luminescence intensity and sulfa antibiotics concentration. Inset: Linear relationship of I_0/I to concentration of sulfa antibiotics.

Fig. S16 PXRD patterns of CP 1 before and after treatment with different analytes.

Fig. S17 The IR spectra of CP 1 before and after treatment with different analytes

Fig. S18 HOMO and LUMO energies for the selected antibiotics(a) and pesticides(b) calculated by the calculation formula (-|4.78+x|eV).

Fig. S19 UV-vis absorption spectra of selected antibiotics(a) and pesticides(b) and the emission spectra of CP **1** in water.