Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information

Hierarchical porous HPW/titania–silica material with superior adsorption-catalytic oxidation activity for multi-ring thiophenic sulfur compounds

The preparation of macroporous template

Monodispersed polystyrene spheres (PS) with the diameter of 350 nm were synthesized by emulsifier-free emulsion polymerization technique without adding surfactant and used as macroporous template. The typical preparation process of monodispersed PS was prepared as follows: 16 mL styrene (2M NaOH solution was used to remove the inhibitor, then washed by distilled water to pH = 7) and 240 mL distilled water were added to 500 mL of the round-bottomed flask and kept at 70 °C under nitrogen atmosphere. Then, 0.28 g of $k_2S_2O_8$ was added under vigorous stirring, the reaction was kept at 70 °C for 6 h. The PS colloidal crystal template was dried in oven at 60 °C and crushed to powder. According to macroporous template usage, certain amount of PS powder was dispersed in ethanol in an ultrasonic bath.

Fig.S1 The DBT removal of HPW@80SiO₂-TiO₂ and hierarchical $80SiO_2$ -TiO₂ catalysts with time; Reaction conditions: catalyst dosage = 0.03 g, T = 30°C, O/S = 4

Catalyst	$m_{(TEOS)}/g$	m _(TBOT) /g	
HPW@TiO ₂	0	2.833	
HPW@10SiO ₂ -TiO ₂	0.231	2.550	
HPW@20SiO ₂ -TiO ₂	0.462	2.267	
HPW@30SiO ₂ -TiO ₂	0.694	1.983	
HPW@40SiO ₂ -TiO ₂	0.924	1.700	
HPW@50SiO ₂ -TiO ₂	1.157	1.416	
HPW@60SiO ₂ -TiO ₂	1.386	1.133	
HPW@70SiO ₂ -TiO ₂	1.617	0.850	
HPW@80SiO ₂ -TiO ₂	1.851	0.567	
HPW@90SiO ₂ -TiO ₂	2.079	0.283	
HPW@SiO ₂	2.31	0	

Table S1 The usage of TEOS and TBOT

Entry	Catalyst	Substrate	Catalyst usage	O/S	Temperature	Conversion
			(g)		(°C)	(%)
1[1]	meso/macroporpus HPW/SiO ₂	DBT	0.05	4:1	60	>99
2[2]	meso/macroporpus HPW/SiO ₂	DBT	0.1	12:1	60	>99
3[3]	meso/macroporpus HPW/TiO ₂	DBT	0.05	4:1	60	>99
4[4]	mesoporpus HPMo/SiO ₂	DBT	0.05	3:1	70	>99
5[5]	[Bmim] ₃ PMo ₁₂ O ₄₀ /SiO 2	DBT	0.1	3:1	60	>88
6[6]	mesoporpus HPW/HMS	DBT	0.2	8:1	60	>99
7[7]	mesoporpus HPW-TiO ₂ -SiO ₂	DBT	0.2	12:1	70	>99
8[8]	mesoporpus HPW/TiO ₂	DBT	0.2	12:1	60	>95
9[9]	mesoporpus HPW-Al ₂ O ₃ -SiO ₂	BT	0.2	2:1	60	>99
10[10]	meso/macroporpus	DBT	0.05	4:1	30	>99
	$H_3PW_{12}O_{40}/T_1O_2$		0.05	4:1	40	>99
11[11]	$\frac{meso/macroporpus}{H_3PW_{12}O_{40}/SiO_2}$	DBT	0.1	4:1	30	>99
This work	HPW@80SiO2-TiO2	DBT	0.03	4:1	30	>99

Table S2 The ODS activity of supported catalyst reported in recent years

References

- [1] Du Y, Yang P, Zhou S, et al. Direct synthesis of ordered meso/macrostructured phosphotungstic acid/SiO₂ by EISA method and its catalytic performance of fuel oil[J]. MATERIALS RESEARCH BULLETIN, 2018,97:42-48.
- [2] P Y, S Z, Du Y, et al. Synthesis of ordered meso/macroporous H₃PW₁₂O₄₀/SiO₂ and its catalytic performance in oxidative desulfurization[J]. RSC ADVANCES, 2016,6(6):53860-53866.
- [3] Yang P, Zhou S, Du Y, et al. Self-assembled meso/macroporous phosphotungstic acid/TiO₂ as an efficient catalyst for oxidative desulfurization of fuels[J]. JOURNAL OF POROUS MATERIALS, 2017,24(2):531-539.
- [4] Qiu J H, Wang G H, Zhang Y Q, et al. Direct synthesis of mesoporous H₃PMo₁₂O₄₀/SiO₂ and its catalytic performance in oxidative desulfurization of fuel oil[J]. FUEL, 2015,147:195-202.
- [5] Zhang J, Wang A J, Li X, et al. Oxidative desulfurization of dibenzothiophene and diesel over [Bmim]₍₃₎PMo₁₂O₄₀[J]. Journal of Catalysis, 2011,279(2):269-275.
- [6] Li B, Ma W, Liu J, et al. Synthesis of the well-ordered hexagonal mesoporous silicate incorporated with phosphotungstic acid through a novel method and its catalytic performance on the oxidative desulfurization reaction[J]. CATALYSIS COMMUNICATIONS, 2011,13(1):101-105.
- [7] Yan X M, Mei P, Xiong L, et al. Mesoporous titania-silica-polyoxometalate nanocomposite materials for catalytic

oxidation desulfurization of fuel oil[J]. CATALYSIS SCIENCE & TECHNOLOGY, 2013,3(8):1985-1992.

- [8] Yan X M, Mei P, Lei J H, et al. Synthesis and characterization of mesoporous phosphotungstic acid/TiO₂ nanocomposite as a novel oxidative desulfurization catalyst[J]. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2009,304(1-2):52-57.
- [9] Yan X, Mei Z, Mei P, et al. Self-assembled HPW/silica-alumina mesoporous nanocomposite as catalysts for oxidative desulfurization of fuel oil[J]. JOURNAL OF POROUS MATERIALS, 2014,21(5):729-737.
- [10] Du Y, Jiaheng L, Lina Z, et al. Highly efficient deep desulfurization of fuels by meso/macroporous H₃PW₁₂O₄₀/TiO₂ at room temperature[J]. MATERIALS RESEARCH BULLETIN, 2018,105:210-219.
- [11] Du Yue, Lei J, Zhou L, et al. Oxidative desulfurization of fuels at room temperature using ordered meso/macroporous H₃PW₁₂O₄₀/SiO₂ catalyst with high specific surface areas[J]. ARABIAN JOURNAL OF CHEMISTRY, 2018. DOI: https://doi.org/10.1016/j.arabjc.2018.06.017