Facile synthesis of New Polyhedron-like WO₃/Butterfly-like Ag₂MoO₄

p-n junction photocatalysts with higher photocatalytic activity in

UV/Solar region light

Jiabin Liu,^{†a} Bowen Yang, ^{†a} Minghuan Gao, ^a Lisha You,^a Yuansen Zhang,^a Zhiying Li,^a Linna Guo,^{a*} Tiesheng Li,^{a*}, Penglei Chen,^b and Minghua Liu.^{b*}

^aCollege of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China. ^bBeijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R China.

[†]. These authors contributed equally.

*Corresponding author.

E-mail address: guolinna@zzu.edu.cn; lts34@zzu.edu.cn; liumh@iccas.ac.cn Tel.: +86-371-67766660 (Office) Fax.: +86-371-67766667 (Office)

Fig. S1. Mott-Schottky cures of (a) Polyhedron-like WO3 and (b) Butterfly-like Ag2MoO4

In the introduction section, we had mentioned that Polyhedron-like WO₃ was most likely an n-type semiconductor ^{40,41}, Butterfly-like Ag₂MoO₄ was probably a p-type semiconductor ^{37,39}. Herein, to further demonstrate the inherent electronic properties of Polyhedron-like WO₃, Butterfly-like Ag₂MoO₄ and **AWM-20**, Mott-Schottky (M-S) methods were employed to ascertain the semiconductor types of Polyhedron-like WO₃ and Butterfly-like Ag₂MoO₄ materials. As depicted in Fig. S1, the slope of $1/C^2$ vs potential curves (SCE) over Polyhedron-like WO₃ sample was positive, and the slope of $1/C^2$ vs potential cures (SCE) over Butterfly-like Ag₂MoO₄ was negative. It was well-known that the positive slope in Mott-Schottky test results was characteristic of ntype semiconductor, while the negative slope represents p-type semiconductor ^{83,84}. Through to the above experimental results, we could fully prove that Polyhedron-like WO₃ material was an n-type semiconductor, Ag₂MoO₄ was a p-type semiconductor, when the two semiconductors combined with each other, there would be a p-n junction structure formation.

Fig. S2. SEM images of (a) fresh AWM-20 sample, (b) used AWM-20 sample after 4 cycling runs under Vis light-driven illumination, (e) used AWM-20 sample after 4 cycling runs under UV light-driven illumination.

Photocatalysts	$S_{BET} (m^2 g^{-1})$	Pore diameter (nm)	Pore volume ($cm^3 g^{-1}$)
Polyhedron-like WO ₃	2.4734	20.8121	0.0138
Butterfly-like Ag ₂ MoO ₄	3.0065	8.5451	0.0080
AWM-20	3.2318	16.1415	0.0153

Table. S1. BET surface areas, pore diameter and pore volumes of the as-prepared samples.

Table. S2. Comparison of Polyhedron-like WO_3 /Butterfly-like Ag_2MoO_4 p-n junction photocatalyst degradation towards organic pollutants (RhB) under visible light. C_{catalyst} is the concentration of photocatalyst in solution, while C_{pollutants} is the concentration of photocatalyst in solution.

	Ccatalyst	Cpollutants	Reaction	Kapp	Refer
Photocatalysts	(mg/mL)	(ppm)	Time (mins)		
Polyhedron-like					
WO ₃ /Butterfly-like	1	30	18	0.2484	This work
Ag ₂ MoO ₄ p-n junction strcture					
Ag@Ag ₂ MoO ₄ -AgBr composite Plasmonic	1	9.58	6	Not given	19
ouha lika	1	0.58	80	Not given	68
Ag-Ag ₂ MoO ₄	1	7.56	00	Not given	00
β-Ag ₂ MoO ₄ /g-C ₃ N ₄					
heterojunctions catalysts	0.6	5	60	0.111	59
Ag ₂ MoO ₄ /Ag ₃ PO ₄ (AgMoP) composites	0.5	15	18 (only 60%)	0.2401	85
Flower-like Ag2MoO4 /Bi2MoO6 heterojunctions	0.6	10	60	0.0435	58
Heterostructured Ag ₂ MoO ₄ /Ag/AgBr cubes	1	15	20	0.0661	67

Fig. S3. (a) First-order kinetic plots in Fig. 12a for the photodegradation of RhB; (b) First-order kinetic plots in Fig. 12b for the photodegradation of RhB.

Fig. S4. (a) First-order kinetic plots in Fig. 9a for the photodegradation of RhB; (b) First-order kinetic plots in Fig. 9c for the photodegradation of RhB.

Fig. S5. (a) First-order kinetic plots in Fig. 9b for the photodegradation of RhB; (b) The full spectrum of the AWM-20 for RhB degradation under Xe lamp irradiation (Solar); (c) First-order kinetic plots in Fig. 9d for the photodegradation of RhB; (d) The full spectrum of the AWM-20 for RhB degradation under Mercury lamp irradiation (UV).

Photocatalysts	$TON(Ag_2MoO_4)$	TON(WO ₃)	TOF(Ag ₂ MoO ₄)/min	TOF(WO ₃)	TON(Total)	TOF(Total)/min
Polyhedron-						
like						
WO ₃	0.00	3.33*10 ⁻⁴	0.00	1.85*10 ⁻⁵	3.33*10 ⁻⁴	1.85*10 ⁻⁵
Butterfly-like	8.33*10 ⁻⁴	0.00	4.63*10 ⁻⁵	0.00	8.33*10 ⁻⁴	4.63*10 ⁻⁵
Ag_2MoO_4						
AWM-20	1.16*10 ⁻¹	1.79*10 ⁻²	6.44*10 ⁻³	9.94*10 ⁻⁴	$1.34*10^{-1}$	7.44*10 ⁻²
P25	0.00	0.00	0.00	0.00	1.10*10 ⁻³	6.11*10 ⁻⁵

Table. S3. The TON/TOF value of each photocatalyst according to the Fig. 9b.

Table. S4. The TON/TOF value of each	photocatalyst accordin	g to the Fig. 9d.
--------------------------------------	------------------------	-------------------

Photocatalysts	TON(Ag ₂ MoO ₄)	TON(WO ₃)	TOF(Ag ₂ MoO ₄)/min	TOF(WO ₃)	TON(Total)	TOF(Total)/min
Polyhedron-						
like						
WO ₃	0.00	$2.69*10^{-4}$	0.00	2.24*10 ⁻⁵	$2.69*10^{-4}$	2.24*10 ⁻⁵
Butterfly-like Ag ₂ MoO ₄	1.81*10 ⁻³	0.00	1.51*10-4	0.00	1.81*10 ⁻³	1.51*10 ⁻⁴
AWM-20	1.16*10 ⁻¹	1.79*10 ⁻²	9.67*10 ⁻³	1.49*10 ⁻³	1.34*10 ⁻²	1.12*10 ⁻³
P25	0.00	0.00	0.00	0.00	3.49*10 ⁻³	2.91*10 ⁻⁴

Table. S5. The Band energy of Ag_2MoO_4 and WO_3 calculated by DRS,

and U	JPS
-------	-----

Sample	E _F (eV)	E _{VB} (eV)	E _{CB} (eV)
WO ₃	-0.76	3.72	1.00
Ag ₂ MoO ₄	-1.26	4.64	0.0038

Synthesis of Polyhedron-like WO3 nanoparticles

Polyhedron-like WO₃ nanoparticles were obtained via a hydrothermal process according to our former work ⁴⁵. Firstly, concentrated sulfuric acid (98%) was deliquated into aqueous sulfuric acid (3mol/L). Secondly, $3.1870 \text{ g of (NH4)}_6\text{H}_2\text{W}_{12}\text{O}_{40}$ •xH₂O was dissolved in 20 mL deionized water and sonicated for about 10 mins. Subsequently, 6.8 mmol of aqueous sulfuric acid (3 mol/L) was added to the ammonium metatungstate reaction solution. After strongly magnetic stirring for about 30 mins, the above precursor solution was transferred into a 50 mL Teflon-lined stainless-steel autoclave. Next, the reaction autoclave was put in an oven and keep at 180 °C for 14 h. Then, the precursor was collected, washed, and dried at 60 °C for 12 h. Finally, the prepared precursor was calcined at 700 °C for 1 h.

Synthesis of Butterfly-like Ag2MoO4 nanoparticles

Butterfly-like Ag_2MoO_4 nanoparticles were synthesized via a facile deposition process according to the previous report ¹⁶. Firstly, 1mmol CH₃COOAg and 0.8325 g

PVP were dissolved it in 50 mL deionized water. Secondly, 2.5 mL (NH₄)₆Mo₇O₂₄• $4H_2O$ (0.0285 M) solution was added to the above solution drop by drop, forming a white suspension. Lastly, the Butterfly-like Ag₂MoO₄ nanoparticles were synthesized. After centrifugation, the as-obtained samples were washed, dried at 60 °C for 12 h.

Oxidizing organic pollutant progress in direct or indirect way

The primary process of RhB photodegradation could be inferred as follows: $(WO_3/Ag_2MoO_4) + hv \rightarrow e^- + h^+$ (1) $Ag^+ + e^- \rightarrow Ag$ (2) $O_2 + e^- \rightarrow \cdot O_2^-$ (3) $H_2O + h^+ \rightarrow HO \cdot$ (4) $HO \cdot + organic pollutant \rightarrow Degraded pollutant$ (5) $\cdot O_2^- + organic pollutant \rightarrow Degraded pollutant$ (6) $h^+ + organic pollutant \rightarrow Degraded pollutant$ (7)